深度学习发展史

本文追溯了深度学习从1958年感知机的提出到现代的深度强化学习的发展历程,涵盖了张量、生成模型、序列学习和深度强化学习四个关键领域。其中,Hinton、LeCun、何恺明等人的工作对深度学习的演进产生了深远影响。从最初的LeNet-5到ResNet,再到Bert,每个阶段都伴随着技术的重大突破。同时,生成模型如GAN的出现,以及LSTM在序列学习中的应用,都极大地推动了深度学习的进步。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文从4个方面(张量、生成模型、序列学习、深度强化学习)追踪深度学习几十年的发展史。

主要按最早研究出现的时间,从4个方面来追踪深度学习的发展史。

1、张量

1958年Frank提出感知机,但后来被一些学者发现因算力的不足,制约了较大神经网络的计算,导致很长时间发展缓慢。

Fukushima在1979年左右提出Neocognitron,感觉这是卷积和池化的雏形。

Hinton在1986年提出反向传播的思想和多层感知机(BPNN/MLP),有非常大的意义,对未来几十年(可以说直到现在)影响深远。

接下来比较重要的发展是,LeCun在1998年提出LeNet-5,7层的CNN做数字识别。

然后AlexNet在12年在ImageNet夺冠,主要是CNN+Dropout+Relu,又是Hinton极大的带动了DL的发展,大佬的地位毋庸置疑。另外相似的还有15年的GoogLeNet。

总算有华人大佬作出大贡献了,16年何恺明(CV领域应该无人不知)提出Resnet,还拿了best paper,影响较大,当然效果也很好。另外相似的还有17年的DenseNet。

17年Capsule Network登场了,又是Hinton。我比较看好胶囊网络在NLP领域的发展,虽然现在还没太明显的效果。因为用胶囊网络来做文本的特征表示的话,可以极大的丰富特征,更适合处理文本这种比较灵活的数据

 

2 、生成模型</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值