MSK接收

4 篇文章 6 订阅
2 篇文章 0 订阅


前言

MSK解调 M序列相关 峰值检测 抽样判决 RS解码 等流程记录

一、MSK解调

MSK信号调制好后表达式如下所示:
S M S K ( t ) = cos ⁡ ( ω c t + π a k 2 T s t + φ k ) , ( k − 1 ) T s ≤ t ≤ k T s , k = 1 , 2 , 3 , ⋯ ⋯ S_{M S K}(t)=\cos \left(\omega_{c} t+\frac{\pi a_{k}}{2 T_{s}} t+\varphi_{k}\right),(k-1) T_{s} \leq t \leq k T_{s}, k=1,2,3, \cdots \cdots SMSK(t)=cos(ωct+2Tsπakt+φk),(k1)TstkTs,k=1,2,3,⋯⋯

请添加图片描述
在移动或是室内的无线通信中,由多径引起的衰落将使相干解调的性能严重下降,误码率随之上升。此时,非相干解调更为合适。同时非相干解调结构简单,不需要载波同步,也不需要频偏、相偏的估计补偿,易于实现,后续采用非相干解调。

与I路本地载波相乘得(存在相偏):
S M S K ( t ) cos ⁡ ( ω c t + ψ ) = cos ⁡ ( ω c t + π t 2 T s a k + φ k ) cos ⁡ ( ω c t + ψ ) = 1 2 cos ⁡ ( 2 ω c t + π t 2 T s a k + φ k + ψ ) + 1 2 cos ⁡ ( π t 2 T s a k + φ k − ψ ) S_{M S K}(t) \cos \left(\omega_{c} t+\psi\right)=\cos \left(\omega_{c} t+\frac{\pi t}{2 T_{s}} a_{k}+\varphi_{k}\right) \cos \left(\omega_{c} t+\psi\right) \\ =\frac{1}{2} \cos \left(2 \omega_{c} t+\frac{\pi t}{2 T_{s}} a_{k}+\varphi_{k}+\psi\right)+\frac{1}{2} \cos \left(\frac{\pi t}{2 T_{s}} a_{k}+\varphi_{k}-\psi\right) SMSK(t)cos(ωct+ψ)=cos(ωct+2Tsπtak+φk)cos(ωct+ψ)=21cos(2ωct+2Tsπtak+φk+ψ)+21cos(2Tsπtak+φkψ)

请添加图片描述

与Q路本地载波相乘得(存在相偏):
S M S K ( t ) ( − sin ⁡ ( ω c t + ψ ) ) = cos ⁡ ( ω c t + π t 2 T s a k + φ k ) ( − sin ⁡ ( ω c t + ψ ) ) = 1 2 sin ⁡ ( π t 2 T s a k + φ k − ψ ) − 1 2 sin ⁡ ( 2 ω c t + π t 2 T s a k + φ k + ψ ) S_{M S K}(t)\left(-\sin \left(\omega_{c} t+\psi\right)\right)=\cos \left(\omega_{c} t+\frac{\pi t}{2 T_{s}} a_{k}+\varphi_{k}\right)\left(-\sin \left(\omega_{c} t+\psi\right)\right) \\ =\frac{1}{2} \sin \left(\frac{\pi t}{2 T_{s}} a_{k}+\varphi_{k}-\psi\right)-\frac{1}{2} \sin \left(2 \omega_{c} t+\frac{\pi t}{2 T_{s}} a_{k}+\varphi_{k}+\psi\right) SMSK(t)(sin(ωct+ψ))=cos(ωct+2Tsπtak+φk)(sin(ωct+ψ))=21sin(2Tsπtak+φkψ)21sin(2ωct+2Tsπtak+φk+ψ)

请添加图片描述
抽取滤波,通过CIC抽取滤波器,滤除高频信号,同时对数据进行降采样:
Y 1 = 1 2 cos ⁡ ( π t 2 T s a k + φ k − ψ ) Y 2 = 1 2 sin ⁡ ( π t 2 T s a k + φ k − ψ ) Y_{1}=\frac{1}{2} \cos \left(\frac{\pi t}{2 T_{s}} a_{k}+\varphi_{k}-\psi\right) \\ Y_{2}=\frac{1}{2} \sin \left(\frac{\pi t}{2 T_{s}} a_{k}+\varphi_{k}-\psi\right) Y1=21cos(2Tsπtak+φkψ)Y2=21sin(2Tsπtak+φkψ)

请添加图片描述
Y1和Y2构成的基带信号分别与f1和f2两个正交基函数在一个符号时间内作相关运算:
∫ 0 T s ( ( Y 1 + j Y 2 ) ⋅ f 1 ) d t ∫ 0 T s ( ( Y 1 + j Y 2 ) ⋅ f 2 ) d t \int_{0}^{T_{s}}\left(\left(Y_{1}+j Y_{2}\right) \cdot f_{1}\right) d t \\ \int_{0}^{T_{s}}\left(\left(Y_{1}+j Y_{2}\right) \cdot f_{2}\right) d t 0Ts((Y1+jY2)f1)dt0Ts((Y1+jY2)f2)dt

其中f1和f2为:

f 1 = e j ( π t 2 T s + θ ) f 2 = e − j ( π t 2 T s + θ ) f_{1}=e^{j\left(\frac{\pi t} {2 T_{s}}+\theta \right)}\\ f_{2}=e^{-j\left(\frac{\pi t}{2 T_{s}}+\theta \right)} f1=ej(2Tsπt+θ)f2=ej(2Tsπt+θ)

Y 1 + j Y 2 与 f 1 做相关 , f 1 中的 θ 是一个常量,将其归到基带信号的 ψ 中,后续不显示了,没什么影响 : ∫ 0 T s ( ( Y 1 + j Y 2 ) ⋅ f 1 ) d t = ∫ 0 T s ( e j ( π t 2 T s a k + φ k − ψ ) ⋅ e j π t 2 T s ) d t = ∫ 0 T s ( e j ( π t 2 T s ( a k + 1 ) + φ k − ψ ) ) d t Y_{1}+j Y_{2} 与 f_{1} 做相关,f_{1}中的 \theta 是一个常量,将其归到基带信号的\psi中,后续不显示了,没什么影响: \\ \int_{0}^{T_{s}}\left(\left(Y_{1}+j Y_{2}\right) \cdot f_{1}\right) d t=\int_{0}^{T_{s}}\left(e^{j\left(\frac{\pi t}{2 T_{s}} a_{k}+\varphi_{k}-\psi\right)} \cdot e^{j \frac{\pi t}{2 T_{s}}}\right) d t=\int_{0}^{T_{s}}\left(e^{j\left(\frac{\pi t}{2 T_{s}}\left(a_{k}+1\right)+\varphi_{k}-\psi\right)}\right) d t Y1+jY2f1做相关,f1中的θ是一个常量,将其归到基带信号的ψ中,后续不显示了,没什么影响:0Ts((Y1+jY2)f1)dt=0Ts(ej(2Tsπtak+φkψ)ej2Tsπt)dt=0Ts(ej(2Tsπt(ak+1)+φkψ))dt
Y 1 + j Y 2 与 f 2 做相相关 , f 2 中的 θ 是一个常量,将其归到基带信号的 ψ 中,后续不显示了,没什么影响 : ∫ 0 T s ( ( Y 1 + j Y 2 ) ⋅ f 2 ) d t = ∫ 0 T s ( e j ( π t 2 T s a k + φ k − ψ ) ⋅ e − j π t 2 T s ) d t = ∫ 0 T s ( e j ( π t 2 T s ( a k − 1 ) + φ k − ψ ) ) d t Y_{1}+j Y_{2} 与 f_{2} 做相相关,f_{2}中的 \theta 是一个常量,将其归到基带信号的\psi中,后续不显示了,没什么影响: \\ \int_{0}^{T_{s}}\left(\left(Y_{1}+j Y_{2}\right) \cdot f_{2}\right) d t=\int_{0}^{T_{s}}\left(e^{j\left(\frac{\pi t}{2 T_{s}} a_{k}+\varphi_{k}-\psi\right)} \cdot e^{-j \frac{\pi t}{2 T_{s}}}\right) d t=\int_{0}^{T_{s}}\left(e^{j\left(\frac{\pi t}{2 T_{s}}\left(a_{k}-1\right)+\varphi_{k}-\psi\right)}\right) d t Y1+jY2f2做相相关,f2中的θ是一个常量,将其归到基带信号的ψ中,后续不显示了,没什么影响:0Ts((Y1+jY2)f2)dt=0Ts(ej(2Tsπtak+φkψ)ej2Tsπt)dt=0Ts(ej(2Tsπt(ak1)+φkψ))dt


当 a k = 1 , Y 1 + j Y 2 与 f 1 相关得: ∫ 0 T s ( ( Y 1 + j Y 2 ) ⋅ f 1 ) d t = ∫ 0 T s ( e j ( π t 2 T s ( a k + 1 ) + φ k − ψ ) ) d t = ∫ 0 T s ( e j ( π t T s + φ k − ψ ) ) d t 当 a_{k}=1, \quad Y_{1}+j Y_{2} 与 f_{1} 相关得:\\ \int_{0}^{T_{s}}\left(\left(Y_{1}+j Y_{2}\right) \cdot f_{1}\right) d t=\int_{0}^{T_{s}}\left(e^{j\left(\frac{\pi t}{2 T_{s}}\left(a_{k}+1\right)+\varphi_{k}-\psi\right)}\right) d t=\int_{0}^{T_{s}}\left(e^{j\left(\frac{\pi t}{T_{s}}+\varphi_{k}-\psi\right)}\right) d t ak=1,Y1+jY2f1相关得:0Ts((Y1+jY2)f1)dt=0Ts(ej(2Tsπt(ak+1)+φkψ))dt=0Ts(ej(Tsπt+φkψ))dt

当 a k = 1 , Y 1 + j Y 2 与 f 2 相关得 : ∫ 0 T s ( ( Y 1 + j Y 2 ) ⋅ f 2 ) d t = ∫ 0 τ s ( e j ( π t 2 τ s ( a k − 1 ) + φ k − ψ ) ) d t = ∫ 0 T s ( e j ( φ k − ψ ) ) d t 当 a_{k}=1, \quad Y_{1}+j Y_{2} 与 f_{2} 相关得 :\\ \int_{0}^{T_{s}}\left(\left(Y_{1}+j Y_{2}\right) \cdot f_{2}\right) d t=\int_{0}^{\tau_{s}}\left(e^{j\left(\frac{\pi t}{2 \tau_{s}}\left(a_{k}-1\right)+\varphi_{k}-\psi\right)}\right) d t=\int_{0}^{T_{s}}\left(e^{j\left(\varphi_{k}-\psi\right)}\right) d t ak=1,Y1+jY2f2相关得:0Ts((Y1+jY2)f2)dt=0τs(ej(2τsπt(ak1)+φkψ))dt=0Ts(ej(φkψ))dt


当 a k = − 1 , Y 1 + j Y 2 与 f 1 相关得 : ∫ 0 T s ( ( Y 1 + j Y 2 ) ⋅ f 1 ) d t = ∫ 0 T s ( e j ( π t 2 T S ( a k + 1 ) + φ k − ψ ) ) d t = ∫ 0 τ s ( e j ( φ k − ψ ) ) d t 当 a_{k}=-1, \quad Y_{1}+j Y_{2} 与 f_{1} 相关得 :\\ \int_{0}^{T_{s}}\left(\left(Y_{1}+j Y_{2}\right) \cdot f_{1}\right) d t=\int_{0}^{T_{s}}\left(e^{j\left(\frac{\pi t}{2 T_{S}}\left(a_{k}+1\right)+\varphi_{k}-\psi\right)}\right) d t=\int_{0}^{\tau_{s}}\left(e^{j\left(\varphi_{k}-\psi\right)}\right) d t ak=1,Y1+jY2f1相关得:0Ts((Y1+jY2)f1)dt=0Ts(ej(2TSπt(ak+1)+φkψ))dt=0τs(ej(φkψ))dt

当 a k = − 1 , Y 1 + j Y 2 与 f 2 相关得: ∫ 0 τ s ( ( Y 1 + j Y 2 ) ⋅ f 2 ) d t = ∫ 0 τ s ( e j ( π t 2 T s ( a k − 1 ) + φ k − ψ ) ) d t = ∫ 0 T s ( e j ( π t T s + φ k − ψ ) ) d t 当 a_{k}=-1, \quad Y_{1}+j Y_{2} 与 f_{2} 相关得:\\ \int_{0}^{\tau_{s}}\left(\left(Y_{1}+j Y_{2}\right) \cdot f_{2}\right) d t=\int_{0}^{\tau_{s}}\left(e^{j\left(\frac{\pi t}{2 T_{s}}\left(a_{k}-1\right)+\varphi_{k}-\psi\right)}\right) d t=\int_{0}^{T_{s}}\left(e^{j\left(\frac{\pi t}{T_{s}}+\varphi_{k}-\psi\right)}\right) d t ak=1,Y1+jY2f2相关得:0τs((Y1+jY2)f2)dt=0τs(ej(2Tsπt(ak1)+φkψ))dt=0Ts(ej(Tsπt+φkψ))dt

————————————————————————————————————————————————————————
即最终都为求两个积分:

∫ 0 T s e j ( φ k − ψ ) d t = T s ⋅ e j ( φ k − ψ ) ∫ 0 T s e j ( π t T s + φ k − ψ ) d t = e j ( φ k − ψ ) ∫ 0 τ s e j π t T s d t = e j ( φ k − ψ ) ⋅ T s j π ⋅ ∫ 0 τ s e j π t T s d j π T s t = e j ( φ k − ψ ) ⋅ T s j π ⋅ e j π t T s ∣ 0 T s = j 2 π ⋅ T s ⋅ e j ( φ k − ψ ) \int_{0}^{T_{s}} e^{j\left(\varphi_{k}-\psi\right)} d t=T_{s} \cdot e^{j\left(\varphi_{k}-\psi\right)} \\ \int_{0}^{T_{s}} e^{j\left(\frac{\pi t}{T_{s}}+\varphi_{k}-\psi\right)} d t=e^{j\left(\varphi_{k}-\psi\right)} \int_{0}^{\tau_{s}} e^{j \frac{\pi t}{T_{s}}} d t=e^{j\left(\varphi_{k}-\psi\right)} \cdot \frac{T_{s}}{j \pi} \cdot \int_{0}^{\tau_{s}} e^{j \frac{\pi t}{T_{s}}} d \frac{j \pi}{T_{s}} t \\ =\left.e^{j\left(\varphi_{k}-\psi\right)} \cdot \frac{T_{s}}{j \pi} \cdot e^{j \frac{\pi t}{T_{s}}}\right|_{0} ^{T_{s}}=\frac{j 2}{\pi} \cdot T_{s} \cdot e^{j\left(\varphi_{k}-\psi\right)} 0Tsej(φkψ)dt=Tsej(φkψ)0Tsej(Tsπt+φkψ)dt=ej(φkψ)0τsejTsπtdt=ej(φkψ)Ts0τsejTsπtdTst=ej(φkψ)TsejTsπt 0Ts=πj2Tsej(φkψ)

再进行一定的处理后,根据Y1和Y2可得
请添加图片描述
由于主要依据接收信号的包络信息进行符号判决,因而该解调算法具有较好的抗相差性能,对信号的适应性强,对载频差要求不严格。

二、突发捕获

在蓝线处抽样判决即可得到ak,但先需要通过m序列准确地检测到信号的起始时刻,才能进行后续处理。利用m序列良好的自相关特性,与本地码做相关运算
请添加图片描述

峰值检测,结果与门限相比较,即可作出判决(门限由阈值和前128个数据的平均值共同得到)
请添加图片描述

三、抽样判决

检测到m序列峰值后,在每一码元的结束时刻进行抽样判决,每组好 1 byte数据,标志位 rdy 有效(拉高),然后将8 bit 数据放入RAM中,为后续RS解码做准备。
请添加图片描述
突发捕获和抽样判决整体如下所示:
请添加图片描述

四、RS解码

当组完设定的255 byte 后,结束标志位有效,启动RS解码。

当接收数据未出错时,RS解码数据完全正确,RS解码时序如下,Latency为2606,时钟周期20ns,2606*20ns=52.12us
请添加图片描述
接收局部数据如下:
请添加图片描述
RS解码后局部数据如下:
请添加图片描述

当接收数据出现错误时(RS(255,191),共191个数据,从191数据后为255-191个校验码,第190个数应该是190,现为142),RS解码时将数据纠正回来
请添加图片描述
请添加图片描述
当接收数据中校验数据出现错误时(RS(255,191),共191个数据,从191数据后为255-191个校验码,第2个校验数应该是5,现为140),RS解码时也可以将数据纠正

请添加图片描述

请添加图片描述

  • 3
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值