Pytorch2.3.1+cu121-GPU速装清清楚楚

Pytorch2.3.1+cu121-GPU速装简单明了
即今江海一归客,他日云霄万里人

第一步

首先检查自己的CUDA版本进入NVIDIA控制面板
在这里插入图片描述
左下角系统信息
组件NVCUDA64显示CUDA12.2.148
接下来我们就可以根据CUDA版本选择torch版本
参考网站
CUDA和torch对应关系看这个: https://dev-discuss.pytorch.org/t/pytorch-release-2-4-1-final-rc-is-available/2422

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

然后命令行显示如下:
在这里插入图片描述

第二步

pip install torch==2.3.1+cu121 torchvision==0.18.1+cu121 torchaudio==2.3.1+cu121 -f https://download.pytorch.org/whl/torch_stable.html

CMD命令行结果如下:
在这里插入图片描述

<think>嗯,用户遇到了PyTorch版本冲突的问题,需要让程序使用指定的2.4.0+cu121版本而不是默认的2.6.0+cpu。首先,我得想清楚用户的环境是什么样的。可能他们安了多个版本的PyTorch,可能是通过pip或者conda安的,导致系统默认加载了错误的版本。常见的解决方法包括虚拟环境隔离、修改环境变量、或者直接指定安路径。 首先,虚拟环境应该是个好办法。用conda或者venv创建一个独立的环境,安所需的版本,这样就不会和其他项目冲突。用户可能已经安了多个版本,但没使用虚拟环境,导致路径混乱。需要指导他们创建新环境,并安正确的版本。比如,使用conda create -n pytorch_2.4.0 python=3.x,然后pip指定版本的PyTorch,以及对应的torchvision和torchaudio,注意兼容性。引用中的链接可能需要用户去下载对应的whl文件,或者直接从官网提供的命令安。 其次,如果用户不想用虚拟环境,可能需要调整导入顺序或者修改sys.path。不过这种方法不太可靠,容易出错。或者在代码里检查版本,确保加载正确。比如在代码开头加入import torch; print(torch.__version__),如果输出版本不对,可能需要检查安路径。 另外,用户可能安了CPU版本的PyTorch,而需要的是CUDA版本。这时候需要卸载现有的,安正确的版本。但如果有多个版本共存,卸载可能不彻底。所以使用虚拟环境更安全。 还要注意依赖库的版本兼容性,比如torchvision和torchaudio是否需要对应版本。引用中提到安后出现不兼容,需要重新安这些库。所以步骤应该是先安PyTorch,再安对应的vision和audio。 环境变量方面,设置CUDA_VISIBLE_DEVICES可能帮助,但主要还是确保PyTorch版本正确。另外,LD_LIBRARY_PATH需要正确指向CUDA的库,但用户可能已经配置好了,所以重点在PyTorch版本选择。 最后,验证是否成功,需要运行检查CUDA是否可用,以及版本号。用户可能需要检查这些步骤是否都正确执行,如果没有,可能需要排查路径问题或者安错误。</think>### PyTorch版本冲突解决方案 按照以下步骤操作可强制程序使用PyTorch 2.4.0+cu121版本: #### 1. 创建独立虚拟环境(推荐) ```bash conda create -n pytorch_2.4.0 python=3.9 # 创建隔离环境 conda activate pytorch_2.4.0 pip install torch==2.4.0+cu121 torchvision==0.16.0+cu121 torchaudio==2.1.0+cu121 --extra-index-url https://download.pytorch.org/whl/cu121 ``` *说明*:虚拟环境可完全隔离不同项目依赖,避免全局版本冲突[^3] #### 2. 若必须使用全局环境 ```bash pip uninstall torch torchvision torchaudio # 先卸载现有版本 pip install torch==2.4.0+cu121 --force-reinstall # 强制安指定版本 ``` *注意*:需同时处理依赖项,如与torchvision、torchaudio的版本兼容性 #### 3. 验证安结果 ```python import torch print(torch.__version__) # 应输出2.4.0+cu121 print(torch.cuda.is_available()) # 应返回True ``` #### 4. 运行时强制校验(可选) ```python assert torch.__version__ == "2.4.0+cu121", "PyTorch版本不符合要求" assert torch.cuda.is_available(), "CUDA不可用" ``` ### 版本管理建议 1. 使用`requirements.txt`明确版本约束: ```text torch==2.4.0+cu121 torchvision==0.16.0+cu121 torchaudio==2.1.0+cu121 ``` 2. 优先通过官方渠道安: ```bash pip install --pre torch --extra-index-url https://download.pytorch.org/whl/test/cu121 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值