Speech | 语音处理,分割一段音频(python)

本文主要是关于语音数据在处理过程中的一些脚本文件以及实例,所有代码只需要更改所需处理的文件路径,输出路径等,全部可运行。

目录

所需环境

方法1:将一整段音频按时间批量切成一个一个音频

方法2:将一整段音频按语句停顿批量切成一个一个音频

方法3:将一个文件夹内的几整段音频批量切成一个一个音频

3.1.数据格式:一个文件夹下的长几分多的音频(wav文件)按固定秒数切割

3.2.数据格式:一个文件夹下的长几分多的音频(mp3文件)按固定秒数切割

3.3.数据格式:一个文件夹下的长几分多的音频(wav文件)按语句停顿切割

扩展

将pcm文件批量处理成wav文件

Linux下查询文件夹中文件数量的方法

使用ls命令和wc命令

WAV格式文件详解


所需环境

本文环境:Linux

pydub(安装:pip3 install pydub)

ffmpeg(apt install ffmpeg)

方法1:将一整段音频按时间批量切成一个一个音频

数据格式:一个长三分五十秒的音频

# split_wav_time.py
from pydub import AudioSegment
from pydub.utils import make_chunks

audio = AudioSegment.from_file("his_one/1.wav", "wav")

#size = 10000  #切割的毫秒数 10s=10000
size = 60000  #切割的毫秒数 60s=60000

chunks = make_chunks(audio, size)  #将文件切割为60s一个

for i, chunk in enumerate(chunks):
    chunk_name = "new-{0}.wav".format(i)
    print(chunk_name)
    chunk.export(chunk_name, format="wav")

运行命令:

python split_wav_time.py

 结果:

方法2:将一整段音频按语句停顿批量切成一个一个音频

数据格式:一个长几分多的音频

利用split_on_silence(sound,min_silence_len,   silence_thresh,    keep_silence=400)函数

第一个参数为待分割音频,第二个为多少秒“没声”代表沉默,第三个为分贝小于多少dBFS时代表沉默,第四个为为截出的每个音频添加多少ms无声

from pydub import AudioSegment
from pydub.silence import split_on_silence
 
sound = AudioSegment.from_mp3("his_one/1.wav")
loudness = sound.dBFS
#print(loudness)
 
chunks = split_on_silence(sound,
    # must be silent for at least half a second,沉默半秒
    min_silence_len=430,
 
    # consider it silent if quieter than -16 dBFS
    silence_thresh=-45,
    keep_silence=400
 
)
print('Len:', len(chunks))
 
# 放弃长度小于2秒的录音片段
for i in list(range(len(chunks)))[::-1]:
    if len(chunks[i]) <= 2000 or len(chunks[i]) >= 10000:
        chunks.pop(i)
print('取有效分段(大于2s小于10s):', len(chunks))
 
'''
for x in range(0,int(len(sound)/1000)):
    print(x,sound[x*1000:(x+1)*1000].max_dBFS)
'''
 
for i, chunk in enumerate(chunks):
    chunk.export("cutwav_{0}.wav".format(i), format="wav")
    #print(i)

  结果:

方法3:将一个文件夹内的几整段音频批量切成一个一个音频

3.1.数据格式:一个文件夹下的长几分多的音频(wav文件)按固定秒数切割

from pydub import AudioSegment
from pydub.utils import make_chunks
import os, re

# # 循环目录下所有文件
for each in os.listdir("/workspace/tts/PolyLangVITS/history"): #循环目录
    
    filename = re.findall(r"(.*?)\.wav", each) # 取出.wav后缀的文件名
    print(each)
    if each:
        # filename[0] += '.wav'
        # print(filename[0])

        mp3 = AudioSegment.from_file('/workspace/tts/PolyLangVITS/history/{}'.format(each), "wav") # 打开mp3文件
#         # # mp3[17*1000+500:].export(filename[0], format="mp3") #
        size = 15000  # 切割的毫秒数 10s=10000

        chunks = make_chunks(mp3, size)  # 将文件切割为15s一块

        for i, chunk in enumerate(chunks):

            chunk_name = "{}-{}.wav".format(each.split(".")[0],i)
            print(chunk_name)
            chunk.export('/workspace/tts/PolyLangVITS/preprodata/his_out/{}'.format(chunk_name), format="wav")



 

 结果

3.2.数据格式:一个文件夹下的长几分多的音频(mp3文件)按固定秒数切割

from pydub import AudioSegment
from pydub.utils import make_chunks
import os, re
# #
# # 循环目录下所有文件
for each in os.listdir("D:/纯音乐"): #循环目录
    
    filename = re.findall(r"(.*?)\.mp3", each) # 取出.mp3后缀的文件名
    print(each)
    if each:
        # filename[0] += '.wav'
        # print(filename[0])

        mp3 = AudioSegment.from_file('D:/纯音乐/{}'.format(each), "mp3") # 打开mp3文件
#         # # mp3[17*1000+500:].export(filename[0], format="mp3") #
        size = 15000  # 切割的毫秒数 10s=10000

        chunks = make_chunks(mp3, size)  # 将文件切割为15s一块

        for i, chunk in enumerate(chunks):

            chunk_name = "{}-{}.mp3".format(each.split(".")[0],i)
            print(chunk_name)
            chunk.export('D:/纯音乐分解/{}'.format(chunk_name), format="mp3")```



 

 3.3.数据格式:一个文件夹下的长几分多的音频(wav文件)按语句停顿切割

 

# @ Elena
# @ Date : 23.9.4


import os, re
from pydub import AudioSegment
from pydub.silence import split_on_silence

# # 循环目录下所有文件
for each in os.listdir("/workspace/tts/PolyLangVITS/history"): 
    filename = re.findall(r"(.*?)\.wav", each) # 取出.wav后缀的文件名
    print(each)
    if each:
        sound = AudioSegment.from_file('/workspace/tts/PolyLangVITS/history/{}'.format(each), "wav")
        loudness = sound.dBFS
    #print(loudness)
 
    chunks = split_on_silence(sound,
        # must be silent for at least half a second,沉默半秒
        min_silence_len=430,
    
        # consider it silent if quieter than -16 dBFS
        silence_thresh=-45,
        keep_silence=400
    
    )
    print('Len:', len(chunks))
    
    # 放弃长度小于1秒的录音片段
    for i in list(range(len(chunks)))[::-1]:
        if len(chunks[i]) <= 1000 or len(chunks[i]) >= 10000:
            chunks.pop(i)
    print('Len (1s~10s wav file):', len(chunks))
    
    '''
    for x in range(0,int(len(sound)/1000)):
        print(x,sound[x*1000:(x+1)*1000].max_dBFS)
    '''
    
    for i, chunk in enumerate(chunks):
        chunk_name = "{}-{}.wav".format(each.split(".")[0],i) 
        chunk.export("/workspace/tts/PolyLangVITS/preprodata/his_out/{}".format(chunk_name), format="wav")
        #print(i)

结果

使用 file 查询  wav

(WAV文件格式是Microsoft的RIFF规范的一个子集,用于存储多媒体文件。WAV(RIFF)文件由若干个Chunk组成,分别为: RIFF WAVE Chunk,Format Chunk,Fact Chunk(可选),Data Chunk。具体格式如下:)

扩展

将pcm文件批量处理成wav文件

import wave
import os
 
filepath = "data/"  # 添加路径
filename = os.listdir(filepath)  # 得到文件夹下的所有文件名称
#f = wave.open(filepath + filename[1], 'rb')
#print(filename)
for i in range(len(filename)):
    with open("data/"+failename[i], 'rb') as pcmfile:
        pcmdata = pcmfile.read()
    with wave.open("data/"+filename[i][:-3] + '.wav', 'wb') as wavfile:
        wavfile.setparams((1, 2, 16000, 0, 'NONE', 'NONE'))
        wavfile.writeframes(pcmdata)

Linux下查询文件夹中文件数量的方法

使用ls命令和wc命令

使用ls命令的-l选项和管道操作符|结合wc命令来统计文件数量:

查询当前文件夹下带有“wav”的文件数量

ls -l | grep "wav" | wc -l

 

WAV格式文件详解

WAV文件格式是Microsoft的RIFF规范的一个子集,用于存储多媒体文件。WAV(RIFF)文件由若干个Chunk组成,分别为: RIFF WAVE Chunk,Format Chunk,Fact Chunk(可选),Data Chunk。具体格式如下:

音频文件参数简介
对于形如44100HZ 16bit stereo 或者 22050HZ 8bit mono参数描述的音频文件,其蕴含的文件参数包括:

采样率:声音信号在“模→数”转换过程中单位时间内采样的次数。
采样值(采样精度):每一次采样周期内声音模拟信号的积分值。
同时,每个采样数据记录的是振幅, 而采样精度取决于储存空间的大小。
对于单声道(mono)文件,采样数据为8位的短整数,同时其采样精度有:

1 字节(8bit) 只能记录 256 个数, 也就是只能将振幅划分成 256 个等级;
2 字节(16bit) 可以细到 65536 个数, 即为 CD 标准;
4 字节(32bit) 能把振幅细分到 4294967296 个等级, 实在是没必要了。
对于双声道立体声(stereo)文件,每次采样数据为一个16位的整数(int),且采样是双份的,也为单声道文件的两倍。采样数据中高八位(左声道)和低八位(右声道)分别代表两个声道。

由于wav格式文件本质上为音频文件,即可根据文件的大小、采样频率和采样大小估算文件的播放长度。
更多可查看Microsoft WAVE soundfile format (sapp.org)

### 音频分割的技术与工具 音频分割是指将一段完整的音频文件按照特定条件划分为若干部分的过程。这一过程可以手动完成,也可以借助自动化工具和技术来实现。 #### 常见的音频分割技术 1. **基于时间的分割** 这种方法是最基础也是最常用的音频分割方式之一。用户可以根据固定的时间间隔或者指定的时间点对音频进行切割[^1]。这种方式适用于需要均匀划分音频场景的情况。 2. **基于静音检测的分割** 此类技术利用音频中的静默片段作为分隔标志,从而自动识别并分离不同语音或音乐段落。这种方法特别适合于演讲录音、会议记录或其他具有明显停顿特征的内容处理[^2]。 3. **机器学习驱动的智能分割** 利用先进的算法模型(如深度神经网络),能够更加精准地解析复杂的音频结构,比如区分背景噪音、人声以及乐器演奏等元素,并据此实施高效的分类和剪辑操作。随着AI技术的发展,未来此类应用会越来越广泛。 #### 推荐使用的音频分割工具 - **MP3Toolkit** MP3Toolkit 是一款全面而易用的桌面应用程序,提供了多种实用的功能选项给用户选择如何管理他们的数字声音资料库。除了基本编辑外,还允许使用者依据预设参数执行大规模的数据调整作业,极大地提高了工作效率。 - **AudioSlicer (Python-based tool)** AudioSlicer 属于开源社区贡献的一个创新型解决方案,主要面向开发者群体提供服务。其核心优势在于可以通过脚本定制化程度极高,尤其对于 .wav 类型的大容量原始素材尤为适用。此外,它还能额外产出元数据文档以便后续追踪参考价值。 以下是简单的 Python 脚本演示如何使用 `pydub` 库配合 silence 模块来进行初步的声音切片: ```python from pydub import AudioSegment from pydub.silence import split_on_silence # 加载音频文件 audio = AudioSegment.from_wav("example.wav") # 使用split_on_silence函数找到所有的非寂静区间 chunks = split_on_silence(audio, min_silence_len=500, silence_thresh=-40) for i, chunk in enumerate(chunks): out_file = f"chunk{i}.wav" print(f"Exporting {out_file}") chunk.export(out_file, format="wav") ``` 上述代码展示了如何加载 WAV 文件并通过侦测其中持续至少半秒(-40dB阈值下) 的安静时段之后将其分解成单独的小节再分别存储下来。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏天|여름이다

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值