数学基础之概率论(1)——基础知识

数学基础之概率论(1)——基础知识

声明写在开头,这里介绍的仅仅只是有关概率论的简单知识,如果想要进行深入了解,我个人使用的教材是浙江大学的概率论与数理统计,B站上也有相应的网课。

1、随机现象
在个别试验中结果呈现出不确定性,在大量重复试验中结果又具有统计规律性。

2、随机试验
对随机现象的观察具有一下3个特点的实验:
a. 可在相同条件下重复进行;
b. 试验结果可能不止一个,但是可以明确指出所有的可能结果;
c. 试验前无法确定最后的结果。
随机试验通常可以简称为试验。

3、样本空间
一个随机试验的所有可能结果组成的集合,记为 Ω = { ω } , \Omega=\{\omega\}, Ω={ω},有时也记为 S = { e } S=\{e\} S={e}

4、样本点
试验的每一个结果或者样本空间的每个元素,记为 ω \omega ω或者 e e e

5、事件
试验中可能出现也可能不出现的情况叫做随机事件,可以简称为事件,事件本质上是样本空间的一个子集,记为 A 、 B 、 C A、B、C ABC等,有 A ⊆ S A\subseteq S AS

6、事件之间的关系
a. A ⊂ B A\subset B AB(包含关系): A A A发生必然导致 B B B发生。有等价关系: A = B ⇔ A ⊂ B A=B \Leftrightarrow A\subset B A=BAB B ⊂ A B\subset A BA

b. A ∪ B A\cup B AB(和事件): A A A B B B的并,即事件 A A A B B B至少有一个发生。
∪ i = 1 n A i \cup^{n}_{i=1}A_{i} i=1nAi n n n个事件 A 1 , A 2 , ⋅ ⋅ ⋅ , A n A_{1},A_{2},···,A_{n} A1,A2,,An至少有一个发生。

c. A ∩ B A\cap B AB(积事件): A A A B B B的交,即 A A A B B B都发生。
∩ i = 1 n A i \cap^{n}_{i=1}A_{i} i=1nAi n n n个事件 A 1 , A 2 , ⋅ ⋅ ⋅ , A n A_{1},A_{2},···,A_{n} A1,A2,,An同时发生。

d. A ∖ B ( A − B ) A\setminus B(A-B) AB(AB)(差事件):事件 A A A发生,而 B B B不发生。

e. ∅ \varnothing (空集):不可能事件。

f. A ∩ B = ∅ A\cap B=\varnothing AB=(互斥):事件 A A A B B B不可能同时发生。

g. A ∪ B = S A\cup B=S AB=S A ∩ B = ∅ A\cap B=\varnothing AB=(互逆):事件 A A A B B B不可能同时发生,但必有一个发生。

h. A c A^{c} Ac(补集): A A A的补集,即 A A A不发生。

7、事件的运算
a. 交换律:
A ∪ B = B ∪ A , A ∩ B = B ∩ A A\cup B=B\cup A, A\cap B=B\cap A AB=BA,AB=BA
b. 结合律:
( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) (A\cup B)\cup C=A\cup(B\cup C) (AB)C=A(BC)
( A ∩ B ) ∩ C = A ∩ ( B ∩ C ) (A\cap B)\cap C=A\cap(B\cap C) (AB)C=A(BC)
c. 分配律:
( A ∪ B ) ∩ C = ( A ∩ C ) ∪ ( B ∩ C ) (A\cup B)\cap C=(A\cap C)\cup(B\cap C) (AB)C=(AC)(BC)
( A ∩ B ) ∪ C = ( A ∪ C ) ∩ ( B ∪ C ) (A\cap B)\cup C=(A\cup C)\cap(B\cup C) (AB)C=(AC)(BC)
d. 德摩根率:
( A ∪ B ) c = ( A c ) ∩ ( B c ) (A\cup B)^{c}=(A^{c})\cap(B^{c}) (AB)c=(Ac)(Bc)
( A ∩ B ) c = ( A c ) ∪ ( B c ) (A\cap B)^{c}=(A^{c})\cup(B^{c}) (AB)c=(Ac)(Bc)

8、频数与频率
在相同条件下,进行 n n n次试验,在这 n n n次试验中事件 A A A发生的次数 n A n_{A} nA,称为事件 A A A发生的频数,比值 n A n \frac{n_{A}}{n} nnA称为事件 A A A发生的频率,记为 f n ( A ) f_{n}(A) fn(A),即 f n ( A ) = n A n f_{n}(A)=\frac{n_{A}}{n} fn(A)=nnA
频率有如下5条性质:
a. 0 ⩽ f n ( A ) ⩽ 1 0\leqslant f_{n}(A)\leqslant 1 0fn(A)1
b. f n ( S ) = 1 , f n ( ∅ ) = 0 f_{n}(S)=1,f_{n}(\varnothing)=0 fn(S)=1,fn()=0
c. 可加性:若 A 1 , A 2 , ⋅ ⋅ ⋅ , A k A_{1},A_{2},···,A_{k} A1,A2,,Ak两两不相容,则 f n ( A 1 ∪ A 2 ∪ ⋅ ⋅ ⋅ ∪ A k ) = f n ( A 1 ) + ⋅ ⋅ ⋅ + f n ( A k ) f_{n}(A_{1}\cup A_{2}\cup···\cup A_{k})=f_{n}(A_{1})+···+f_{n}(A_{k}) fn(A1A2Ak)=fn(A1)++fn(Ak)
d. 随机波动性:对于同样的 n n n,所得的 f n f_{n} fn不一定相同;
e. n n n充分大时,具有稳定性。

9、概率的定义
概率的统计定义:
实践证明,当试验次数 n n n增大时, f n ( A ) f_{n}(A) fn(A)逐渐趋向一个稳定值,可将此稳定值记为 P ( A ) P(A) P(A),作为事件 A A A的概率。

概率的公理化定义:
若对随机试验 E E E所对应的样本空间 S S S中的每一个事件 A A A,均赋予一实数 P ( A ) P(A) P(A),集合函数 P ( A ) P(A) P(A)满足条件:
( 1 ) (1) (1)非负性: P ( A ) ⩾ 0 P(A)\geqslant 0 P(A)0
( 2 ) (2) (2)规范性: P ( S ) = 1 P(S)=1 P(S)=1
( 3 ) (3) (3)可列可加性:设 A 1 , A 2 , A 3 ⋅ ⋅ ⋅ A_{1},A_{2},A_{3}··· A1,A2,A3是一系列两两无关的事件,即 A i ∩ A j = ∅ , ( i ≠ j A_{i}\cap A_{j}=\varnothing,(i\neq j AiAj=,(i=j i , j = 1 , 2 , 3 , ⋅ ⋅ ⋅ ) i,j=1,2,3,···) i,j=1,2,3,),有
P ( ∪ k = 1 ∞ A k ) = ∑ k = 1 ∞ P ( A k ) P(\cup_{k=1}^{\infty}A_{k})=\sum_{k=1}^{\infty}P(A_{k}) P(k=1Ak)=k=1P(Ak)
则称 P ( A ) P(A) P(A)为事件 A A A的概率。

10、概率的性质
a. P ( ∅ ) = 0 P(\varnothing)=0 P()=0

b. A 1 , A 2 , ⋅ ⋅ ⋅ , A n A_{1},A_{2},···,A_{n} A1,A2,,An是两两无关的事件,则有 P ( A 1 ∪ A 2 ∪ ⋅ ⋅ ⋅ ∪ A n ) = P ( A 1 ) + P ( A 2 ) + ⋅ ⋅ ⋅ + P ( A n ) P(A_{1}\cup A_{2}\cup···\cup A_{n})=P(A_{1})+P(A_{2})+···+P(A_{n}) P(A1A2An)=P(A1)+P(A2)++P(An)(概率的有限可加性)。

c. 单调不减性:设 A , B A,B A,B为两个事件,且 A ⊂ B A\subset B AB,则 P ( A ) ⩽ P ( B ) , P ( B − A ) = P ( B ) − P ( A ) P(A)\leqslant P(B),P(B-A)=P(B)-P(A) P(A)P(B),P(BA)=P(B)P(A)

d. 事件差的公式:对于任意事件 A , B A,B A,B,有
P ( A − B ) = P ( A ) − P ( A ∩ B ) P(A-B)=P(A)-P(A\cap B) P(AB)=P(A)P(AB)

e. 互补公式:对于任意事件 A A A,有 P ( A c ) = 1 − P ( A ) P(A^{c})=1-P(A) P(Ac)=1P(A)

f. 加法公式:对于任意事件 A , B A,B A,B,有
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A\cup B)=P(A)+P(B)-P(A\cap B) P(AB)=P(A)+P(B)P(AB)
推广可得 n n n个事件和的情况:
P ( ∪ i = 1 n A i ) = ∑ i = 1 n P ( A i ) − ∑ 1 ⩽ i < j ⩽ n P ( A i ∩ A j ) + ∑ 1 ⩽ i < j < k ⩽ n P ( A i ∩ A j ∩ A k ) + ⋅ ⋅ ⋅ + ( − 1 ) n − 1 P ( A 1 ∩ A 2 ∩ ⋅ ⋅ ⋅ ∩ A n ) P(\cup_{i=1}^{n}A_{i})=\sum_{i=1}^{n}P(A_{i})-\sum_{1\leqslant i<j\leqslant n}P(A_{i}\cap A_{j})+\sum_{1\leqslant i<j<k\leqslant n}P(A_{i}\cap A_{j}\cap A_{k})+···+(-1)^{n-1}P(A_{1}\cap A_{2}\cap···\cap A_{n}) P(i=1nAi)=i=1nP(Ai)1i<jnP(AiAj)+1i<j<knP(AiAjAk)++(1)n1P(A1A2An)

11、古典概型
若试验 E E E满足
( 1 ) (1) (1)有限性:样本空间 S = { e 1 , e 2 , ⋅ ⋅ ⋅ , e n } S=\{e_{1},e_{2},···,e_{n}\} S={e1,e2,,en}
( 2 ) (2) (2)等可能性:(公认) P ( e 1 ) = P ( e 2 ) = ⋅ ⋅ ⋅ = P ( e n ) P(e_{1})=P(e_{2})=···=P(e_{n}) P(e1)=P(e2)==P(en)
则称 E E E为古典概型,也称为等可能概型。

在古典概型中,设事件 A A A中所含样本点个数为 N ( A ) N(A) N(A),以 N ( S ) N(S) N(S)记样本空间 S S S中样本点总数,则有 P ( A ) = N ( A ) N ( S ) P(A)=\frac{N(A)}{N(S)} P(A)=N(S)N(A) P ( A ) P(A) P(A)具有如下性质:
( 1 ) (1) (1) 0 ⩽ P ( A ) ⩽ 1 0\leqslant P(A) \leqslant 1 0P(A)1
( 2 ) (2) (2) P ( S ) = 1 , P ( ∅ ) = 0 P(S)=1,P(\varnothing)=0 P(S)=1,P()=0
( 3 ) (3) (3) A ∩ B = ∅ , A\cap B=\varnothing, AB=, P ( A ∪ B ) = P ( A ) + P ( B ) P(A\cup B)=P(A)+P(B) P(AB)=P(A)+P(B)

古典概型的几类基本问题:
( 1 ) (1) (1) 摸球问题
( 2 ) (2) (2) 分球入盒问题
( 3 ) (3) (3) 分组问题
( 4 ) (4) (4) 随机取数问题
( 5 ) (5) (5) 抽签问题

12、排列与组合的基本概念
a. 乘法定理:设完成一件事需要分两步,第一步有 n 1 n_{1} n1种方法,第二步有 n 2 n_{2} n2种方法,则完成这件事共有 n 1 n 2 n_{1}n_{2} n1n2种方法。

b. 加法定理:设完成一件事可有两种途径,第一种途径有 n 1 n_{1} n1种方法,第二种途径有 n 2 n_{2} n2种方法,则完成这件事共有 n 1 + n 2 n_{1}+n_{2} n1+n2种方法。

c. 有重复排列:从含有 n n n个元素的集合中随机抽取 k k k次,每次取一个,记录结果后放回,将记录结果排成一列。共有 n k n^{k} nk种排列方式。

d. 无重复排列:从含有 n n n个元素的集合中随机抽取 k k k次,每次取一个,取后不放回,将所取元素排成一列。共有 A n k = n ( n − 1 ) ( n − 2 ) ⋅ ⋅ ⋅ ( n − k + 1 ) A^{k}_{n}=n(n-1)(n-2)···(n-k+1) Ank=n(n1)(n2)(nk+1)种排列方式。

e. 组合:从含有 n n n个元素的集合种随机抽取 k k k个,共有
C n k = ( k n ) = A n k k ! = n ! k ! ( n − k ) ! C_{n}^{k}=(^{n}_{k})=\frac{A^{k}_{n}}{k!}=\frac{n!}{k!(n-k)!} Cnk=(kn)=k!Ank=k!(nk)!n!种取法。

13、条件概率
a. 符号解释:
在已知事件 A A A发生的条件下,事件 B B B发生的概率称为 A A A发生条件下 B B B发生的条件概率,记为 P ( B ∣ A ) P(B|A) P(BA)

b. 条件概率定义:
一般的,设 A , B A,B A,B S S S中的两个事件, P ( A ) ≠ 0 P(A)\neq 0 P(A)=0,则
P ( B ∣ A ) = P ( A ∩ B ) P ( A ) P(B|A)=\frac{P(A\cap B)}{P(A)} P(BA)=P(A)P(AB)
称为事件 A A A发生的条件下事件 B B B发生的条件概率。

c. 条件概率性质: ( P ( A ) ≠ 0 ) (P(A)\neq0) (P(A)=0)
( 1 ) (1) (1) P ( B ∣ A ) ⩾ 0 P(B|A)\geqslant0 P(BA)0
( 2 ) (2) (2) P ( S ∣ A ) = 1 P(S|A)=1 P(SA)=1
( 3 ) (3) (3) 对一系列两两无关的事件 A 1 , A 2 , A 3 ⋅ ⋅ ⋅ A_{1},A_{2},A_{3}··· A1,A2,A3,有
P ( A 1 ∪ A 2 ∪ ⋅ ⋅ ⋅ ∣ A ) = P ( A 1 ∣ A ) + P ( A 2 ∣ A ) + ⋅ ⋅ ⋅ P(A_{1}\cup A_{2}\cup···|A)=P(A_{1}|A)+P(A_{2}|A)+··· P(A1A2A)=P(A1A)+P(A2A)+

d. 乘法公式:设 A , B A,B A,B为两事件, P ( A ) > 0 P(A)>0 P(A)>0,则 P ( A ∩ B ) = P ( A ) P ( B ∣ A ) P(A\cap B)=P(A)P(B|A) P(AB)=P(A)P(BA),并且该公式可以推广为: P ( A 1 ∩ A 2 ∩ ⋅ ⋅ ⋅ ∩ A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) ⋅ ⋅ ⋅ P ( A n ∣ A 1 ∩ A 2 ∩ ⋅ ⋅ ⋅ ∩ A n − 1 ) P(A_{1}\cap A_{2}\cap···\cap A_{n})=P(A_{1})P(A_{2}|A_{1})···P(A_{n}|A_{1}\cap A_{2}\cap···\cap A_{n-1}) P(A1A2An)=P(A1)P(A2A1)P(AnA1A2An1)

14、独立性
a. 两个事件的独立性:设 A , B A,B A,B是两个事件,若 P ( A ∩ B ) = P ( A ) P ( B ) P(A\cap B)=P(A)P(B) P(AB)=P(A)P(B),则称事件 A A A B B B相互独立,简称独立。
定理:以下四种情形等价
( 1 ) (1) (1) 事件 A , B A,B A,B相互独立;
( 2 ) (2) (2) 事件 A c , B A^{c},B Ac,B相互独立;
( 3 ) (3) (3) 事件 A , B c A,B^{c} A,Bc相互独立;
( 4 ) (4) (4) 事件 A c , B c A^{c},B^{c} Ac,Bc相互独立。

b. 多个事件的独立性:一般的,设 A 1 , A 2 , ⋅ ⋅ ⋅ , A n A_{1},A_{2},···,A_{n} A1,A2,,An n n n个事件,如果对任意 k ( 1 < k ⩽ n ) k(1<k\leqslant n) k(1<kn),任意的 1 ⩽ i 1 < i 2 < ⋅ ⋅ ⋅ < i k ⩽ n 1\leqslant i_{1}<i_{2}<···<i_{k}\leqslant n 1i1<i2<<ikn,具有等式
P ( A i 1 ∩ A i 2 ∩ ⋅ ⋅ ⋅ ∩ A i k ) = P ( A i 1 ) P ( A i 2 ) ⋅ ⋅ ⋅ P ( A i k ) P(A_{i_{1}}\cap A_{i_{2}}\cap···\cap A_{i_{k}})=P(A_{i_{1}})P(A_{i_{2}})···P(A_{i_{k}}) P(Ai1Ai2Aik)=P(Ai1)P(Ai2)P(Aik)
则称 n n n个事件 A 1 , A 2 , ⋅ ⋅ ⋅ , A n A_{1},A_{2},···,A_{n} A1,A2,,An相互独立。

15、全概率公式与贝叶斯公式
a. 划分的定义:事件组 A 1 , A 2 , ⋅ ⋅ ⋅ , A n ( n A_{1},A_{2},···,A_{n}(n A1,A2,,An(n可为 ∞ ) \infty) ),称为样本空间 S S S的一个划分,如果满足:
( 1 ) (1) (1) ∪ i = 1 n A i = S \cup_{i=1}^{n}A_{i}=S i=1nAi=S
( 2 ) (2) (2) A i A j = ∅ , ( i ≠ j A_{i}A_{j}=\varnothing,(i\neq j AiAj=,(i=j i , j = 1 , 2 , ⋅ ⋅ ⋅ , n ) i,j=1,2,···,n) i,j=1,2,,n)
A 1 , A 2 , ⋅ ⋅ ⋅ , A n A_{1},A_{2},···,A_{n} A1,A2,,An任意两个不可能同时发生,但必有一个发生。

b. 全概率公式:设 A 1 , A 2 , ⋅ ⋅ ⋅ , A n A_{1},A_{2},···,A_{n} A1,A2,,An S S S的一个划分,且 P ( A i ) > 0 , ( i = 1 , 2 , ⋅ ⋅ ⋅ , n ) P(A_{i})>0,(i=1,2,···,n) P(Ai)>0,(i=1,2,,n),则对任何事件 B B B
P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(B)=\sum_{i=1}^{n}P(A_{i})P(B|A_{i}) P(B)=i=1nP(Ai)P(BAi)
上式即称为全概率公式。

c. 贝叶斯公式:设 A 1 , A 2 , ⋅ ⋅ ⋅ , A n A_{1},A_{2},···,A_{n} A1,A2,,An S S S的一个划分,且 P ( A i ) > 0 , ( i = 1 , 2 , ⋅ ⋅ ⋅ , n ) P(A_{i})>0,(i=1,2,···,n) P(Ai)>0,(i=1,2,,n),则对任何事件 B , P ( B ) > 0 B,P(B)>0 BP(B)>0,有
P ( A j ∣ B ) = P ( A j ) P ( B ∣ A j ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) , ( j = 1 , 2 , ⋅ ⋅ ⋅ , n ) P(A_{j}|B)=\frac{P(A_{j})P(B|A_{j})}{\sum_{i=1}^{n}P(A_{i})P(B|A_{i})},(j=1,2,···,n) P(AjB)=i=1nP(Ai)P(BAi)P(Aj)P(BAj),(j=1,2,,n)
上式即称为贝叶斯公式。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值