数学基础之代数学(4)——多项式

数学基础之代数学(4)——多项式

1、基础概念
多项式中有一个未知数就是一元(如 x x x),有两个未知数就是二元(如 x , y x,y x,y),以此类推。这里主要针对医院多项式展开讨论。给定一个实数域 R R R,一个变量(未知数) x x x,一元多项式的数学形式即 f ( x ) = ∑ i = 0 n a i x i f(x)=\sum_{i=0}^na_ix^i f(x)=i=0naixi,其中 a i ∈ R , a n ≠ 0 a_i\in R,a_n\neq0 aiR,an=0
多项式的项数 = = = a i a_i ai中不为 0 0 0的个数
多项式的次数 = = = n n n
多项式的首项为次数最高的项,即 a n x n a_nx^n anxn,当 a n = 1 a_n=1 an=1时,该多项式被称为首一多项式。

2、多项式的运算
a. 多项式加(减)法:对应次数的项的系数相加(减)
f ( x ) = ∑ i = 0 n a i x i , g ( x ) = ∑ i = 0 n b i x i f(x)=\sum_{i=0}^na_ix^i,g(x)=\sum_{i=0}^nb_ix^i f(x)=i=0naixi,g(x)=i=0nbixi
则有 f ( x ) ± g ( x ) = ∑ i = 0 n a i x i ± ∑ i = 0 n b i x i = ∑ i = 0 n ( a i ± b i ) x i f(x)\pm g(x)=\sum_{i=0}^na_ix^i\pm\sum_{i=0}^nb_ix^i=\sum_{i=0}^n(a_i\pm b_i)x^i f(x)±g(x)=i=0naixi±i=0nbixi=i=0n(ai±bi)xi

b. 多项式乘法:两个多项式的每一项都相乘,最终将次数相同的项合并
f ( x ) = ∑ i = 0 n a i x i , g ( x ) = ∑ i = 0 n b i x i f(x)=\sum_{i=0}^na_ix^i,g(x)=\sum_{i=0}^nb_ix^i f(x)=i=0naixi,g(x)=i=0nbixi
则有 f ( x ) ⋅ g ( x ) = ∑ i = 0 n a i x i ⋅ ∑ i = 0 n b i x i = ∑ i = 0 n ∑ j = 0 n a i b j x i + j f(x)\cdot g(x)=\sum_{i=0}^na_ix^i\cdot\sum_{i=0}^nb_ix^i=\sum_{i=0}^n\sum_{j=0}^na_ib_jx^{i+j} f(x)g(x)=i=0naixii=0nbixi=i=0nj=0naibjxi+j

c. 多项式除法:与整除类似,只不过使用长除法,个人技术有限,运算过程看图片
在这里插入图片描述

随便找了一张图,不要在意背景,其中的商是 x 2 + 2 x + 3 x^2+2x+3 x2+2x+3,余式是 − 6 -6 6,以上演示的就是多项式的长除法。
当且仅当存在多项式 h ( x ) h(x) h(x),令 f ( x ) = g ( x ) h ( x ) f(x)=g(x)h(x) f(x)=g(x)h(x),我们可以说多项式 g ( x ) g(x) g(x)整除 f ( x ) f(x) f(x),且 g ( x ) g(x) g(x)被称为 f ( x ) f(x) f(x)的因式,这意味着,多项式也可以进行因式分解,实际上,这一点非常重要。
如果多项式 d ( x ) d(x) d(x)即是 f ( x ) f(x) f(x)的因式,也是 g ( x ) g(x) g(x)的因式,那么我们可以称 d ( x ) d(x) d(x) f ( x ) f(x) f(x) g ( x ) g(x) g(x)的公因式。并且,如果 f ( x ) f(x) f(x) g ( x ) g(x) g(x)的所有公因式都是 d ( x ) d(x) d(x)的因式,那么多项式 d ( x ) d(x) d(x)就是 f ( x ) f(x) f(x) g ( x ) g(x) g(x)的最大公因式,记为 g c d ( f ( x ) , g ( x ) ) gcd(f(x),g(x)) gcd(f(x),g(x))

3、基础性质
a. ( 1 + x ) n = ∑ i = 0 n C n i x i (1+x)^n=\sum_{i=0}^nC_n^ix^i (1+x)n=i=0nCnixi,其中 C n i C_n^i Cni为组合数

b. n n n个点可以唯一确定一个 n n n次多项式

c. 一个 n n n次多项式有 n n n个负数根(多项式的跟即是方程 f ( x ) = 0 f(x)=0 f(x)=0的解)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值