数学基础之代数学(4)——多项式
1、基础概念
多项式中有一个未知数就是一元(如
x
x
x),有两个未知数就是二元(如
x
,
y
x,y
x,y),以此类推。这里主要针对医院多项式展开讨论。给定一个实数域
R
R
R,一个变量(未知数)
x
x
x,一元多项式的数学形式即
f
(
x
)
=
∑
i
=
0
n
a
i
x
i
f(x)=\sum_{i=0}^na_ix^i
f(x)=∑i=0naixi,其中
a
i
∈
R
,
a
n
≠
0
a_i\in R,a_n\neq0
ai∈R,an=0。
多项式的项数
=
=
=
a
i
a_i
ai中不为
0
0
0的个数
多项式的次数
=
=
=
n
n
n
多项式的首项为次数最高的项,即
a
n
x
n
a_nx^n
anxn,当
a
n
=
1
a_n=1
an=1时,该多项式被称为首一多项式。
2、多项式的运算
a. 多项式加(减)法:对应次数的项的系数相加(减)
设
f
(
x
)
=
∑
i
=
0
n
a
i
x
i
,
g
(
x
)
=
∑
i
=
0
n
b
i
x
i
f(x)=\sum_{i=0}^na_ix^i,g(x)=\sum_{i=0}^nb_ix^i
f(x)=∑i=0naixi,g(x)=∑i=0nbixi,
则有
f
(
x
)
±
g
(
x
)
=
∑
i
=
0
n
a
i
x
i
±
∑
i
=
0
n
b
i
x
i
=
∑
i
=
0
n
(
a
i
±
b
i
)
x
i
f(x)\pm g(x)=\sum_{i=0}^na_ix^i\pm\sum_{i=0}^nb_ix^i=\sum_{i=0}^n(a_i\pm b_i)x^i
f(x)±g(x)=∑i=0naixi±∑i=0nbixi=∑i=0n(ai±bi)xi。
b. 多项式乘法:两个多项式的每一项都相乘,最终将次数相同的项合并
设
f
(
x
)
=
∑
i
=
0
n
a
i
x
i
,
g
(
x
)
=
∑
i
=
0
n
b
i
x
i
f(x)=\sum_{i=0}^na_ix^i,g(x)=\sum_{i=0}^nb_ix^i
f(x)=∑i=0naixi,g(x)=∑i=0nbixi,
则有
f
(
x
)
⋅
g
(
x
)
=
∑
i
=
0
n
a
i
x
i
⋅
∑
i
=
0
n
b
i
x
i
=
∑
i
=
0
n
∑
j
=
0
n
a
i
b
j
x
i
+
j
f(x)\cdot g(x)=\sum_{i=0}^na_ix^i\cdot\sum_{i=0}^nb_ix^i=\sum_{i=0}^n\sum_{j=0}^na_ib_jx^{i+j}
f(x)⋅g(x)=∑i=0naixi⋅∑i=0nbixi=∑i=0n∑j=0naibjxi+j。
c. 多项式除法:与整除类似,只不过使用长除法,个人技术有限,运算过程看图片
随便找了一张图,不要在意背景,其中的商是
x
2
+
2
x
+
3
x^2+2x+3
x2+2x+3,余式是
−
6
-6
−6,以上演示的就是多项式的长除法。
当且仅当存在多项式
h
(
x
)
h(x)
h(x),令
f
(
x
)
=
g
(
x
)
h
(
x
)
f(x)=g(x)h(x)
f(x)=g(x)h(x),我们可以说多项式
g
(
x
)
g(x)
g(x)整除
f
(
x
)
f(x)
f(x),且
g
(
x
)
g(x)
g(x)被称为
f
(
x
)
f(x)
f(x)的因式,这意味着,多项式也可以进行因式分解,实际上,这一点非常重要。
如果多项式
d
(
x
)
d(x)
d(x)即是
f
(
x
)
f(x)
f(x)的因式,也是
g
(
x
)
g(x)
g(x)的因式,那么我们可以称
d
(
x
)
d(x)
d(x)为
f
(
x
)
f(x)
f(x)和
g
(
x
)
g(x)
g(x)的公因式。并且,如果
f
(
x
)
f(x)
f(x)和
g
(
x
)
g(x)
g(x)的所有公因式都是
d
(
x
)
d(x)
d(x)的因式,那么多项式
d
(
x
)
d(x)
d(x)就是
f
(
x
)
f(x)
f(x)和
g
(
x
)
g(x)
g(x)的最大公因式,记为
g
c
d
(
f
(
x
)
,
g
(
x
)
)
gcd(f(x),g(x))
gcd(f(x),g(x))。
3、基础性质
a.
(
1
+
x
)
n
=
∑
i
=
0
n
C
n
i
x
i
(1+x)^n=\sum_{i=0}^nC_n^ix^i
(1+x)n=∑i=0nCnixi,其中
C
n
i
C_n^i
Cni为组合数
b. n n n个点可以唯一确定一个 n n n次多项式
c. 一个 n n n次多项式有 n n n个负数根(多项式的跟即是方程 f ( x ) = 0 f(x)=0 f(x)=0的解)