OpenCV图像处理学习十五,卷积边缘处理API使用

本文探讨了图像卷积中边界像素的问题,介绍了如何使用OpenCV的copyMakeBorder API处理边缘,通过示例展示了不同边框类型(BORDER_CONSTANT、BORDER_REPLICATE、BORDER_WRAP)下处理后的效果,强调了边界填充在高要求图像处理中的重要性。
摘要由CSDN通过智能技术生成

一.卷积边界问题

图像卷积的时候边界像素,不能被卷积操作,原因在于边界像素没有完全跟kernel重叠,所以当3x3滤波时候有1个像素的边缘没有被处理,5x5滤波的时候有2个像素的边缘没有被处理。

二.处理边缘

在卷积开始之前增加边缘像素,填充的像素值为0或者RGB黑色,比如用3x3核的时候在四周各填充1个像素的边缘,这样就确保图像的边缘被处理,在卷积处理之 后再去掉这些边缘。

openCV中默认的处理方法是给图像添加边缘API:

#边缘填充API函数接口
cv::copyMakeBorder(  
          Mat src, // 输入图像  
          Mat dst, // 添加边缘图像  
          int top, // 边缘长度,一般上下左右都取相同值,  
          int bottom,  
          int left,  
          int right,  
          int borderType // 边缘类型  
          Scalar value )                  

BORDER_CONSTANT:填充边缘用指定的像素值(常量)。
BORDER_REPLICATE:填充用最近的一行或者一列边缘像素来补充边缘的宽度和高度。
BORDER_WRAP:将对面的像素进行映射。
BORDER_DEFAULT:将最近的像素进行映射。

=========================================================================

代码实现:

#include"stdafx.h"
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace cv;
int main(int argc, char** argv) {
	Mat src, dst;
	src = imread("F:/photo/qx.jpg");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}
	//char INPUT_WIN[] = "input image";
	//char OUTPUT_WIN[] = "Border Demo";
	namedWindow("input_windows", WINDOW_AUTOSIZE);
	namedWindow("output_windows", WINDOW_AUTOSIZE);
	imshow("input_windows", src);
	
	int top = (int)(0.05*src.rows);
	int bottom = (int)(0.05*src.rows);
	int left = (int)(0.05*src.cols);
	int right = (int)(0.05*src.cols);
	RNG rng(12345);
	int borderType=BORDER_DEFAULT;

	int c = 0;
	while (true) {
	c = waitKey(500);
	// ESC
	if ((char)c == 27) {
	break;
	}
	if ((char)c == 'r') {
	borderType = BORDER_REPLICATE;
	} else if((char)c == 'w') {
	borderType = BORDER_WRAP;
	} else if((char)c == 'c') {
	borderType = BORDER_CONSTANT;
	}

	//定义颜色
	Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
	copyMakeBorder(src, dst, top, bottom, left, right, borderType, color);
	imshow("output_windows", dst);
	
	
	Mat dst1;
	GaussianBlur(dst, dst1, Size(10, 10), 0, 0);
	imshow("output_windows1", dst1);
    }

	waitKey(0);
	return 0;
}

-------------------------------------------------------------------------------------------------------------------

图像处理效果:

图像边缘填充后进行模糊没有多大的实际意义,这里只是举个例子,但是对于一些要求比较高的图像处理,例如边界特征提取,边缘清晰等,边界填充就有很大的意义。

borderType = BORDER_DEFAULT时的图像:

 

borderType =  BORDER_WRAP(将对面的像素进行映射)时的图像:

borderType = BORDER_CONSTANT时的图像

borderType = BORDER_CONSTANT(特定值)时的图像:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肖爱Kun

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值