线性空间与基
实系数线性空间是一个由向量组成的集合, 向量之间可以做加减法, 向量与实数之间可以做乘法, 而且这些加, 减, 乘运算要求满足常见的交换律和结合律, 我们也可以类似的定义其他系数的线性空间
举例(线性空间)
有原点的平面
- 如果平面有一个原点 O O O, 那么平面上任何一个点 P P P, 都对应着一个向量 O P ⃗ \vec{OP} OP
- 这些向量以及它们的运算结构放在一起, 就组成一个向量空间
基是线性空间里的一组向量, 使得任何一个向量都可以唯一的表示成这组基的线性组合
举例(坐标空间)
有原点的平面, 加上一组基 { X ⃗ , Y ⃗ } \{\vec{X},\vec{Y}\} {X,Y}
- 任何一个向量 O P ⃗ \vec{OP} OP, 都可以唯一表达成 O P ⃗ = a X ⃗ + b Y ⃗ \vec{OP}=a\vec{X}+b\vec{Y} OP=aX+bY的形式
- ( a , b ) (a,b) (a,b)就是 P P P点的坐标
基给出了定量描述线性结构的方法: 坐标系
基的选择取决于要研究的问题
线性映射与矩阵
线性映射
V
V
V和
W
W
W是两个实线性空间,
T
:
V
→
W
T:V\rightarrow W
T:V→W如果满足如下条件就是一个线性映射
(
i
)
T
(
v
1
+
v
2
)
=
T
(
v
1
)
+
T
(
v
2
)
,
∀
v
1
,
v
2
∈
V
(i)T(v_1+v_2)=T(v_1)+T(v_2), \forall v_1, v_2\in V
(i)T(v1+v2)=T(v1)+T(v2),∀v1,v2∈V
(
i
i
)
T
(
λ
v
)
=
λ
T
(
v
)
,
∀
λ
∈
R
,
v
∈
V
(ii)T(\lambda v)=\lambda T(v), \forall\lambda\in\mathbb{R},v\in V
(ii)T(λv)=λT(v),∀λ∈R,v∈V
- 线性映射的本质就是保持线性结构的映射
- 到自身的线性映射 T : V → V T:V\rightarrow V T:V→V叫做线性变换
线性变换的矩阵描述
V
,
W
V,W
V,W分别为
n
,
m
n,m
n,m维的线性空间,
α
=
{
α
1
,
…
,
α
n
}
,
β
=
{
β
1
,
…
,
β
m
}
\alpha=\{\alpha_1,\ldots,\alpha_n\},\beta=\{\beta_1,\ldots,\beta_m\}
α={α1,…,αn},β={β1,…,βm}分别为
V
,
W
V,W
V,W的一组基,
T
:
V
→
W
T:V\rightarrow W
T:V→W是一个线性映射, 于是
T
,
α
,
β
T,\alpha,\beta
T,α,β唯一决定一个矩阵
A
α
,
β
(
T
)
=
[
A
i
j
]
m
×
n
A_{\alpha,\beta}(T)=[A_{ij}]_{m\times n}
Aα,β(T)=[Aij]m×n, 是的
T
(
a
j
)
=
∑
i
=
1
m
A
i
j
∗
β
i
,
∀
j
∈
1
,
…
,
n
T(a_j)=\sum\limits^m_{i=1}A_{ij}*\beta_i,\forall j\in 1,\ldots,n
T(aj)=i=1∑mAij∗βi,∀j∈1,…,n
等价于
T
(
α
1
,
…
,
α
n
)
=
(
β
1
,
…
,
β
m
)
⋅
A
α
,
β
(
T
)
T(\alpha_1,\ldots,\alpha_n)=(\beta_1,\ldots,\beta_m)\cdot A_{\alpha,\beta}(T)
T(α1,…,αn)=(β1,…,βm)⋅Aα,β(T)
简记为
T
(
α
)
=
β
⋅
A
α
,
β
(
T
)
T(\alpha)=\beta\cdot A_{\alpha,\beta}(T)
T(α)=β⋅Aα,β(T)
基变换下的矩阵变换公式的推导方法
Q
⋅
A
α
,
β
~
~
(
T
)
⋅
P
−
1
=
A
α
,
β
(
T
)
Q\cdot A_{\tilde{\alpha,\tilde{\beta}}}(T)\cdot P^{-1}=A_{\alpha,\beta}(T)
Q⋅Aα,β~~(T)⋅P−1=Aα,β(T)
线性回归
- 模型: y = β 0 + β 1 x 1 + ⋯ + β k x k + ϵ y=\beta_0+\beta_1x_1+\dots+\beta_kx_k+\epsilon y=β0+β1x1+⋯+βkxk+ϵ余项 ϵ \epsilon ϵ服从正态分布 N ( 0 , σ ) N(0,\sigma) N(0,σ)
- 数据: 样本 ∗ Y i , X i 1 , … , X i k , 1 ≤ i ≤ n *Y_i,X_{i1},\dots,X_{ik},1\leq i\leq n ∗Yi,Xi1,…,Xik,1≤i≤n
- 目的: 估计参数 β 1 , … , β k \beta_1,\dots,\beta_k β1,…,βk