线性代数

线性空间与基

实系数线性空间是一个由向量组成的集合, 向量之间可以做加减法, 向量与实数之间可以做乘法, 而且这些加, 减, 乘运算要求满足常见的交换律和结合律, 我们也可以类似的定义其他系数的线性空间

举例(线性空间)
有原点的平面

  • 如果平面有一个原点 O O O, 那么平面上任何一个点 P P P, 都对应着一个向量 O P ⃗ \vec{OP} OP
  • 这些向量以及它们的运算结构放在一起, 就组成一个向量空间

基是线性空间里的一组向量, 使得任何一个向量都可以唯一的表示成这组基的线性组合

举例(坐标空间)
有原点的平面, 加上一组基 { X ⃗ , Y ⃗ } \{\vec{X},\vec{Y}\} {X ,Y }

  • 任何一个向量 O P ⃗ \vec{OP} OP , 都可以唯一表达成 O P ⃗ = a X ⃗ + b Y ⃗ \vec{OP}=a\vec{X}+b\vec{Y} OP =aX +bY 的形式
  • ( a , b ) (a,b) (a,b)就是 P P P点的坐标

基给出了定量描述线性结构的方法: 坐标系
基的选择取决于要研究的问题

线性映射与矩阵

线性映射

V V V W W W是两个实线性空间, T : V → W T:V\rightarrow W T:VW如果满足如下条件就是一个线性映射
( i ) T ( v 1 + v 2 ) = T ( v 1 ) + T ( v 2 ) , ∀ v 1 , v 2 ∈ V (i)T(v_1+v_2)=T(v_1)+T(v_2), \forall v_1, v_2\in V (i)T(v1+v2)=T(v1)+T(v2),v1,v2V
( i i ) T ( λ v ) = λ T ( v ) , ∀ λ ∈ R , v ∈ V (ii)T(\lambda v)=\lambda T(v), \forall\lambda\in\mathbb{R},v\in V (ii)T(λv)=λT(v),λR,vV

  • 线性映射的本质就是保持线性结构的映射
  • 到自身的线性映射 T : V → V T:V\rightarrow V T:VV叫做线性变换

线性变换的矩阵描述

V , W V,W V,W分别为 n , m n,m n,m维的线性空间, α = { α 1 , … , α n } , β = { β 1 , … , β m } \alpha=\{\alpha_1,\ldots,\alpha_n\},\beta=\{\beta_1,\ldots,\beta_m\} α={α1,,αn},β={β1,,βm}分别为 V , W V,W V,W的一组基, T : V → W T:V\rightarrow W T:VW是一个线性映射, 于是 T , α , β T,\alpha,\beta T,α,β唯一决定一个矩阵 A α , β ( T ) = [ A i j ] m × n A_{\alpha,\beta}(T)=[A_{ij}]_{m\times n} Aα,β(T)=[Aij]m×n, 是的
T ( a j ) = ∑ i = 1 m A i j ∗ β i , ∀ j ∈ 1 , … , n T(a_j)=\sum\limits^m_{i=1}A_{ij}*\beta_i,\forall j\in 1,\ldots,n T(aj)=i=1mAijβi,j1,,n
等价于
T ( α 1 , … , α n ) = ( β 1 , … , β m ) ⋅ A α , β ( T ) T(\alpha_1,\ldots,\alpha_n)=(\beta_1,\ldots,\beta_m)\cdot A_{\alpha,\beta}(T) T(α1,,αn)=(β1,,βm)Aα,β(T)
简记为
T ( α ) = β ⋅ A α , β ( T ) T(\alpha)=\beta\cdot A_{\alpha,\beta}(T) T(α)=βAα,β(T)
基变换下的矩阵变换公式的推导方法
Q ⋅ A α , β ~ ~ ( T ) ⋅ P − 1 = A α , β ( T ) Q\cdot A_{\tilde{\alpha,\tilde{\beta}}}(T)\cdot P^{-1}=A_{\alpha,\beta}(T) QAα,β~~(T)P1=Aα,β(T)

线性回归

  • 模型: y = β 0 + β 1 x 1 + ⋯ + β k x k + ϵ y=\beta_0+\beta_1x_1+\dots+\beta_kx_k+\epsilon y=β0+β1x1++βkxk+ϵ余项 ϵ \epsilon ϵ服从正态分布 N ( 0 , σ ) N(0,\sigma) N(0,σ)
  • 数据: 样本 ∗ Y i , X i 1 , … , X i k , 1 ≤ i ≤ n *Y_i,X_{i1},\dots,X_{ik},1\leq i\leq n Yi,Xi1,,Xik,1in
  • 目的: 估计参数 β 1 , … , β k \beta_1,\dots,\beta_k β1,,βk
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值