大数定律和中心极限定理

随机变量的矩

X X X是一个随机变量对于任何正整数 n n n, 定义
E ( X n ) = ∫ p ( x ) x n d x E(X^n)=\int p(x)x^ndx E(Xn)=p(x)xndx

  • n = 1 n=1 n=1时, E ( X ) E(X) E(X)为随机变量的期望
  • n = 2 n=2 n=2时, E ( X 2 ) − E ( X ) 2 E(X^2)-E(X)^2 E(X2)E(X)2为随机变量的方差
  • 特征函数, E ( e i t X ) = ∑ n = 0 ∞ E ( X n ) n ! ( i t ) n E(e^{itX})=\sum{^\infty_{n=0}}\frac{E(X^n)}{n!}(it)^n E(eitX)=n=0n!E(Xn)(it)n
    矩可以描述随机变量的一些特征, 期望是 X X X"中心"位置的一种描述, 反差可以描述 X X X的分散程度, 特征函数可以全面描述概率分布

切比雪夫不等式

X X X为随机变量, 期望值为 μ \mu μ, 标准差为 σ \sigma σ, 对于任何实数 k > 0 k>0 k>0
P ( ∣ X − μ ∣ ≥ k σ ) ≤ 1 k 2 P(|X-\mu|\geq k\sigma)\leq \frac{1}{k^2} P(Xμkσ)k21
切比雪夫不等式给出反差对 X X X分散程度的描述提供了一个定量的估计

随机变量的相关系数

X , Y X,Y X,Y是两个随机变量

  • X , Y X,Y X,Y的协方差: c o v ( X , V ) = E ( X Y ) − E ( X ) E ( Y ) cov(X,V)=E(XY)-E(X)E(Y) cov(X,V)=E(XY)E(X)E(Y)
  • X , Y X,Y X,Y的相关系数: c o v ( X , V ) / ( V a r ( X ) V a r ( Y ) ) ∈ [ − 1 , 1 ] cov(X,V)/\sqrt{(Var(X)Var(Y))}\in[-1,1] cov(X,V)/(Var(X)Var(Y)) [1,1]

独立随机变量

X , Y X,Y X,Y是两个随机变量, 如果联合分布 p ( x , y ) = p ( x ) p ( y ) p(x,y)=p(x)p(y) p(x,y)=p(x)p(y), 则 X , Y X,Y X,Y为独立随机变量

  • 独立随机变量相关系数为0
  • 相关系数为0, 两个随机变量不见得独立

利用特征函数研究概率分布

如下列举一些特征函数 ϕ X ( t ) = E ( e i t X ) \phi_X(t)=E(e^{itX}) ϕX(t)=E(eitX)自身的重要性质

  • 对于任何 X , ϕ X ( t ) X,\phi_X(t) X,ϕX(t)都存在
  • ϕ ( 0 ) = 1 \phi(0)=1 ϕ(0)=1 ∣ ϕ ( t ) ∣ ≤ 1 , ∀ t |\phi(t)|\leq1,\forall t ϕ(t)1,t
  • ϕ ( t ) \phi(t) ϕ(t)是一个连续函数
  • ϕ X ( t ) ‾ = ϕ − X ( t ) \overline{\phi_X(t)}=\phi_{-X}(t) ϕX(t)=ϕX(t), 所以如果 X X X关于中心对称, 那么 ϕ X ( t ) \phi_X(t) ϕX(t)就是一个实函数
  • 如果 X X X n n n阶矩存在, 那么 ϕ X ( t ) \phi_X(t) ϕX(t)至少 n n n阶可微, 并且 E ( X n ) = ( − i ) n ϕ ( n ) ( 0 ) E(X^n)=(-i)^n\phi^{(n)}(0) E(Xn)=(i)nϕ(n)(0)

如下列举一些不同的随机变量的特征函数的重要性质

  • 如果 X , Y X,Y X,Y是两个独立随机变量, 那么 ϕ X + Y ( t ) = ϕ X ( t ) ϕ Y ( t ) \phi_{X+Y}(t)=\phi_X(t)\phi_Y(t) ϕX+Y(t)=ϕX(t)ϕY(t)
  • 如果 ϕ X ( t ) = ϕ Y ( t ) \phi_X(t)=\phi_Y(t) ϕX(t)=ϕY(t), 那么 X , Y X,Y X,Y服从同一个分布
  • 如果 X n {X_n} Xn是一个随机变量序列, 而且 ϕ X n ( t ) \phi_{X_n}(t) ϕXn(t)逐点收敛于一个函数 ϕ ∞ ( t ) \phi_\infty(t) ϕ(t), 如果 ϕ ∞ \phi_\infty ϕ在0处连续, 那么存在一个分布 X ∞ ( t ) X_\infty(t) X(t), 是的 X n X_n Xn按分布收敛于 X ∞ ( t ) X_\infty(t) X(t)

特殊分布的特征函数

  • 独立分布 p ( a ) = 1 , ϕ ( t ) = e i a t p(a)=1, \phi(t)=e^{iat} p(a)=1,ϕ(t)=eiat
  • 两点分布 p ( − 1 ) = p ( 1 ) = 1 2 , ϕ ( t ) = cos ⁡ ( t ) p(-1)=p(1)=\frac{1}{2}, \phi(t)=\cos(t) p(1)=p(1)=21,ϕ(t)=cos(t)
  • 正太分布, 概率密度函数 f ( x ) = 1 2 π e − x 2 2 , ϕ ( t ) = e − t 2 2 f(x)=\frac{1}{\sqrt{2}\pi}e^{-\frac{x^2}{2}}, \phi(t)=e^{-\frac{t^2}{2}} f(x)=2 π1e2x2,ϕ(t)=e2t2
  • 泊松分布 p ( n ) = e − λ λ n n ! , ϕ ( t ) = e − λ ( 1 − e i t ) p(n)=e^{-\lambda}\frac{\lambda^n}{n!}, \phi(t)=e^{-\lambda(1-e^{it})} p(n)=eλn!λn,ϕ(t)=eλ(1eit)

自然对数底数 e e e的定义

  • lim ⁡ n → ∞ ( 1 + 1 / n ) n \lim\limits_{n \to \infty}(1+1/n)^n nlim(1+1/n)n存在, 且定义 e = lim ⁡ n → ∞ ( 1 + 1 / n ) n e=\lim\limits_{n \to \infty}(1 + 1/n)^n e=nlim(1+1/n)n
  • 于是定义 e x = lim ⁡ n → ∞ ( 1 + x / n ) n e^x=\lim\limits_{n \to \infty}(1+x/n)^n ex=nlim(1+x/n)n

大数定律

X X X是随机变量, μ \mu μ X X X的期望, σ \sigma σ X X X的方差, { X k } k = 1 ∞ \{X_k\}^\infty_{k=1} {Xk}k=1是服从 X X X的独立同分布随机变量, 那么 X ˉ n = ∑ k = 1 n X k n \bar{X}_n=\frac{\sum\limits_{k=1}^nX_k}{n} Xˉn=nk=1nXk依概率收敛于 μ \mu μ, 也就是说对于任何 ϵ > 0 \epsilon>0 ϵ>0
lim ⁡ n → ∞ P ( ∣ X ˉ n − μ ∣ > ϵ ) = 0 \lim\limits_{n \to \infty}P(|\bar{X}_n-\mu|>\epsilon)=0 nlimP(Xˉnμ>ϵ)=0

中心极限定理

X X X是随机变量, ϕ ( X ) \phi(X) ϕ(X) X X X的特征函数. { X k } k = 1 ∞ \{X_k\}^\infty_{k=1} {Xk}k=1是服从 X X X的独立同分布随机变量, 那么
Z n = n σ ( X ˉ n − μ ) Z_n=\frac{\sqrt{n}}{\sigma}(\bar{X}_n-\mu) Zn=σn (Xˉnμ)
依分布收敛于正太分布 N ( 0 , 1 ) N(0,1) N(0,1)
也就是说对于任何 ϵ > 0 \epsilon>0 ϵ>0
lim ⁡ n → ∞ P ( Z n < z ) = Φ ( z ) , ∀ z \lim\limits_{n \to \infty}P(Z_n<z)=\Phi(z), \forall z nlimP(Zn<z)=Φ(z),z
其中 Φ \Phi Φ是标准正太分布的分布函数

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值