torch.broadcast_tensors()原理解析

a, b = torch.broadcast_tensors(x, y)中,是将x与y的形状“黏合”起来,从而组成两个形状相同的tensor:a、b,其中最主要要注意的点是,x的第一维(最后一维)必须与y的最后一维(第一维)相同且为1,例如:

x.shape:torch.Size([1, 2, 4]), 
y.shape:torch.Size([2, 2, 1])
a, b = torch.broadcast_tensors(x, y)

最终会得到的形状为

a.shape:torch.Size([2, 2, 4]), 
b.shape:torch.Size([2, 2, 4])

最终代码且运行结果为

import torch

x = torch.arange(8).view(1, 2, 4)
y = torch.arange(4).view(2, 2, 1)
a, b = torch.broadcast_tensors(y, x)
print('x:{},\ny:{}'.format(x, y))
print('x.shape:{}, \ny.shape:{}'.format(x.shape, y.shape))
print('a:{},\nb:{}'.format(a, b))
print('a.shape:{}, \nb.shape:{}'.format(a.shape, b.shape))

结果为

x:tensor([[[0, 1, 2, 3],
         [4, 5, 6, 7]]]),
y:tensor([[[0],
         [1]],

        [[2],
         [3]]])
x.shape:torch.Size([1, 2, 4]), 
y.shape:torch.Size([2, 2, 1])
a:tensor([[[0, 1, 2, 3],
         [4, 5, 6, 7]],

        [[0, 1, 2, 3],
         [4, 5, 6, 7]]]),
b:tensor([[[0, 0, 0, 0],
         [1, 1, 1, 1]],

        [[2, 2, 2, 2],
         [3, 3, 3, 3]]])
a.shape:torch.Size([2, 2, 4]), 
b.shape:torch.Size([2, 2, 4])
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值