【HMM】隐马尔可夫/EM算法—数学公式黑板推导

目录

HMM概念和参数

Evaluate估计问题

求参问题-EM算法

EM算法公式推导

解码问题


HMM概念和参数

概率图模型:1到T时刻的状态呈现时间序列特性,通过T时刻的状态q,对应得出该时刻的观测值y。

三个参数:qt-1 -> qt 转移概率集合为A;qt -> yt 发射概率集合为B;q1的概率为π。

两个假设:1、齐次Markov:qt只与qt-1相关;2、观察独立:yt只与yt-1相关。

三个问题:1、已知参数λ={A,B,π},求y的条件概率,即预估观测值y;2、通过数据学习参数λ;3、已知y和λ,解码最大概率Q序列。

Evaluate估计问题

计算观测变量Y,将状态变量Q放入,并对联合概率在Q上积分(离散积分=求和);

利用齐次Markov假设:P(qt | q1:t-1,λ) = P(qt | qt-1,λ);

每一个q都有N个取值,所以最后P(Y | λ) 是O(N^T)。!困难

计算P(Y | λ) 方法之forward algorithm: 

设αt = P(y1:t,qt | λ),q取N个值概率的和即为P(Y | λ);

探索αt+1和αt的迭代关系,再次利用两个假设(图中箭头)。

计算P(Y | λ) 方法之backward algorithm: 

设βt = P(yt+1:T | qt,λ),q1取N个值;

右侧探索βt与βt+1的迭代关系,P(yt+1:T | qt+1,qt) = P(yt+1:T | qt+1)这里根据概率图关系,与qt无关;

通过多次迭代求得β1后得出P(Y | λ)。

求参问题-EM算法

Expectation—Maximization:迭代每一时刻的参数;

数据信息X->观测变量Y,隐变量Z->状态变量Q,迭代参数Θ->hmm参数λ;

这里通过拉格朗日乘子法对π求条件偏导,参数a,b求解方法一样,此处省略。

EM算法公式推导

由高斯混合模型引入EM迭代算法,GMM加入隐变量Z不改变边缘概率P(xi);

迭代需要满足下一时刻参数对应的概率必须>=前一时刻的概率,

即:logP(x | Θg+1) >= logP(x | Θg),加入隐变量Z,并在Z概率分布上积分;

求得logP(X | Θ) = Q(Θ​​​​​​​,Θ​​​​​​​g) - H(Θ​​​​​​​,Θg);

因为H(Θ​​​​​​​g,Θ​​​​​​​g)-H(Θ​​​​​​​,Θg)>=0,即下一时刻H还<=上一时刻H,相当于减了一个更小的H,所以直接舍去H,只对Q(Θ​​​​​​​,Θg)求最大值即可。(因为- log是凹函数,由琴生不等式可知:函数的期望>=期望的函数值,所以得出H(Θ​​​​​​​g,Θ​​​​​​​g)-H(Θ​​​​​​​,Θg)>=0)

广义EM:hmm或者gmm都是特定条件下的应用EM算法,隐变量满足高斯分布或者马尔可夫性质,广义的EM算法对于拟合分布q,在p分布复杂情况下,要求q尽量逼近真实分布p。在对q(z)分布积分后,p(x)公式拆分为ELBO和kl散度。E-step是给定参数Θ后,求出该参数下最拟合p的q,M-step是求出给定拟合好的q下的最优参数Θ。!广义的EM中,ELBO的H[q(z)]=∫q(z)log1/q(z)dz就是q(z)的熵H[q(z)],而在特定模型下,其实就因为模型的性质使得H[q(z)]可以约去。

解码问题

给定观测序列Y和参数λ,求使得概率最大的状态变量序列Q,其实就是个 求最大概率的动态规划问题。每个时刻的q都有N个取值。

写的有点匆忙,有问题可以+v: llllChrist,注明csdn。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值