【Linear Classification】线性分类数学公式解析

目录

线性分类框架

感知机

线性判别分析LDA - Fisher

逻辑回归 

高斯判别分析GDA

朴素贝叶斯


线性分类框架

根据输出值,输出为{0,1}离散值则为硬分类,包括感知机和线性判别分析;输出为[0,1]之间的概率值则为软分类,包括高斯判别分析(比较后验概率大小)和逻辑回归(likelihood)。从线性回归到线性分类,通过激活函数将线性回归的输出值降维至{0,1}或者[0,1]之间。

感知机

随机梯度下降算法SGD更新参数W,λ是设定的learning rate。多层感知机便是深度学习的基础。

​​​​​​​

线性判别分析LDA - Fisher

核心原理就是将数据投影到分类平面W上,根据类内小,类间达的原理求出最佳投影平面后进行分类输出;

图中举例类1和类2,类间大表示为 类1和类2各自投影的均值Z 差的平方即(Z1-Z2)^2 ;类内小表示为类1和类2投影的方差S的和即S1+S2。参数W就是使得max方程J(W)=类间/类内。

在对J(W)求最大时, ∂J(W)/ ∂W  = 0,其中因为WT·Sw·W和WT·Sb·W都是1xP * PxP * Px1 = 一维实数,(Xc1-Xc2)T·W同样是1xP * Px1的一维实数,所以W正比于Sw-1(Xc1-Xc2)。

逻辑回归 

【判别模型】逻辑回归引入了sigmoid函数,WTX -> +∞,sigmoid ->1;反之-> 0 。MLE最大后验概率 = 最小交叉熵。

高斯判别分析GDA

【生成模型】不同于逻辑回归求最大后验,GDA在于比较P(y=0 | x)和P(y=1 | x)的大小,根据贝叶斯P(x)与y无关所以P(y | x)的大小就等于P(x,y)联合概率的大小,或者P(y)·P(x | y);模型中先验P(y)属于伯努利分布,P(x|y)属于均值不同,方差相同的N个高斯分布 。

 N1是与y=1的样本点个数,N2是y=0的样本点个数。

求方差时注意,(xi-μ)T·ε-1·(xi-μ) 为1xp ·pxp ·px1 实数就等于它举证的迹tr,tr内相乘举证可以互换位置,换位后求和(xi-μ)T·(xi-μ)就看作是方差S。注:矩阵tr的求导公式。

朴素贝叶斯

【生成模型】同GDA雷同,简单的概率图模型——>条件独立性假设为了简便计算。

有问题可+V:llllChrist,注明CSDN。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值