ISP调试中的一些问题现象(持续更新)

本文详细介绍了图像处理中常见的问题,包括迷宫纹、FalseColor伪色现象、PFC紫边以及FPN固定模式噪声。迷宫纹源于镜头与传感器的搭配问题,FalseColor是由于demosaic过程中的颜色判断错误,紫边由多种光学和图像处理因素综合造成,而FPN噪声则需要通过校正来消除。解决这些问题对于提高图像质量至关重要。
摘要由CSDN通过智能技术生成

目录

1、迷宫纹现象

2、False Color现象

3、PFC (Purple Fringing Compensation)紫边


1、迷宫纹现象

原因:Crosstalk (Green Equal)

这主要是lens与sensor搭配性的问题,当光线进入sensor上micro lens的角度太大,容易误接收到应该被邻近pixel接收的讯号,导致Gr、Gb差异变大,因此这现象较容易发生在画面角落,或是光线从某个特殊角度进入时画面出现迷宫纹。

调试方法:调整Crosstalk中Threshold和Strength。

2、False Color现象

画面高频处或edge边缘出现伪色。

 原因:由于demosaic时未考虑方向或方向判断错误导致错误的颜色产生,容易发生在画面高频区域或edge边缘。

3、PFC (Purple Fringing Compensation)紫边

物体边界边缘出现紫色边缘。

原因: 紫边形成的原因不能归于一个因素,是:波动光学+几何光学+图像数字化+ 颜色插值的这个过程共同产生的。

4、FPN固定模式噪声

Fix pattern noise 与时间无关,表现上看就是噪声幅度不随时间变化。

也有的分法把fix pattern noise定义为在图像行或者列存在的一条条的噪声,如下图所示。

这样,根据FPN噪声形成机制,分为行FPN列FPN,

去除FPN噪声的过程就称之为:FPN校正

参考;紫边形成原因理解_tyfwin的博客-CSDN博客

串扰(cross talk)是指在电路,信号在一个导线上传输时,会对相邻导线上的信号产生干扰的现象。根据引用\[1\]的描述,串扰的大小可以通过仿真模式下的网络受到的串扰来观察。在不同的仿真模式下,串扰的大小会有所不同。引用\[2\]提到了针对串扰的分析方法,包括DC Threshold和AC Threshold。DC Threshold只分析串扰的幅度,而AC Threshold还会分析串扰的宽度和输出负载。引用\[3\]提到了Simulation Mode和Include Each Neighbor的概念。个人理解是,Simulation Mode是指在仿真考虑串扰影响比例大于20%的情况,而Include Each Neighbor是基于All Neighbor的结果,并根据Worst Case Each Victim Highest指定的值来运行每个邻居的仿真。综上所述,串扰是指信号在相邻导线上产生干扰的现象,可以通过不同的仿真模式和分析方法来观察和分析。 #### 引用[.reference_title] - *1* *3* [Allegro Aurora <III>---Crosstalk](https://blog.csdn.net/m0_53280471/article/details/129772952)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [STA分析(六) cross talk and noise](https://blog.csdn.net/ahr7882/article/details/101149632)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

岁月蹉跎的一杯酒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值