朴素贝叶斯详解——从条件概率的引入到朴素贝叶斯的形成再到模型的训练

1、用案例引出条件概率

用类似抽签的案例
换句话来说就是先抢和后抢的概率如何。
讨论:
有人说先抢第一个人中的概率是1/47,第二个人抢的概率是1/46,依次下来,越后面的人概率是越大的。这是错的,为什么呢,因为在每一次抽的情况下我都要考虑,前一个人不中概率是多少,然后才能轮到下一个人抢是不是,算一下概率。

我们总共进行了n轮事件, A n − 1 A_{{\rm{n}} - 1} An1代表“第n-1轮不中”

事件 B n B_{\rm{n}} Bn代表“第n轮抽中”

假设在第5轮我一定想要100元,可能性多大?

就是要列出当n=5时,发生的概率,那么要算n=5的前提,必须就是n=1、2、3、4都不中。

P ( A 1 ‾ A 1 ‾ A 1 ‾ A 1 ‾ B 5 ) = P ( A 1 ‾ ) ⋅ P ( A 2 ‾ ∣ A 1 ‾ ) ⋅ P ( A 3 ‾ ∣ A 2 ‾ A 1 ‾ ) ⋅ P ( A 4 ‾ ∣ A 3 ‾ A 2 ‾ A 1 ‾ ) ⋅ P ( A 5 ‾ ∣ A 4 ‾ A 3 ‾ A 2 ‾ A 1 ‾ ) P(\overline {A_1 } \overline {A_1 } \overline {A_1 } \overline {A_1 } B_5 ) = P(\overline {A_1 } ) \cdot P(\overline {A_2 } |\overline {A_1 } ) \cdot P(\overline {A_3 } |\overline {A_2 } \overline {A_1 } ) \cdot P(\overline {A_4 } |\overline {A_3 } \overline {A_2 } \overline {A_1 } ) \cdot P(\overline {A_5 } |\overline {A_4 } \overline {A_3 } \overline {A_2 } \overline {A_1 } ) P(A1A1A1A1B5)=P(A1)P(A2A1)P(A3A2A1)P(A4A3A2A1)P(A5A4A3A2A1)

P ( A 1 ‾ ) = 46 47 P(\overline {A_1 } ) = {{46} \over {47}} P(A1)=4746

当A1抽完之后,那么就还剩下46个,除去1个中的,那么A2不中的概率就是45/46

P ( A 2 ‾ ∣ A 1 ‾ ) = 45 46 P(\overline {A_2 } |\overline {A_1 } ) = {{45} \over {46}} P(A2A1)=4645

以此类推

P ( A 3 ‾ ∣ A 2 ‾ A 1 ‾ ) = 44 45 P(\overline {A_3 } |\overline {A_2 } \overline {A_1 } ) = {{44} \over {45}} P(A3A2A1)=4544

P ( A 4 ‾ ∣ A 3 ‾ A 2 ‾ A 1 ‾ ) = 43 44 P(\overline {A_4 } |\overline {A_3 } \overline {A_2 } \overline {A_1 } ) = {{43} \over {44}} P(A4A3A2A1)=4443

那么最后

P ( A 5 ‾ ∣ A 4 ‾ A 3 ‾ A 2 ‾ A 1 ‾ ) = 1 43 P(\overline {A_5 } |\overline {A_4 } \overline {A_3 } \overline {A_2 } \overline {A_1 } ) = {1 \over {43}} P(A5A4A3A2A1)=431

就是说无论抽多少此可以发现,相乘之后,中间的都会被约掉仍然是1/47,所以无需纠结。

2、条件概率引出贝叶斯

以硬币为例正面为X,反面为Y
A=“至少有一次为X”
B=“两次都为同一面”

列出样本空间,S为总的样本空间
S={XX,XY,YX,YY}
A={XY,XX,YX}
B={XX,YY}

那么A发生的条件下B发生的概率是多少?

对比AB可以看出
在这里插入图片描述
P(B|A)=1/3

S对比A、B,容易看出
P(A)=3/4,P(B)=1/2
在这里插入图片描述

P(AB)=1/4

∴可以发现

P ( B ∣ A ) = P ( A B ) P ( A ) = 1 3 P(B|A) = {{P(AB)} \over {P(A)}} = {1 \over 3} P(BA)=P(A)P(AB)=31


P ( A B ) = P ( B ∣ A ) P ( A ) P(AB) = P(B|A)P(A) P(AB)=P(BA)P(A)

变形一下

P ( B A ) = P ( A ∣ B ) P ( B ) P(BA) = P(A|B)P(B) P(BA)=P(AB)P(B)

又∵

P ( B A ) = P ( A B ) P(BA) = P(AB) P(BA)=P(AB)

代入

P ( B ∣ A ) = P ( A B ) P ( A ) = 1 3 P(B|A) = {{P(AB)} \over {P(A)}} = {1 \over 3} P(BA)=P(A)P(AB)=31

P ( B ∣ A ) = P ( A ∣ B ) P ( B ) P ( A ) = 1 3 P(B|A) = {{P(A|B)P(B)} \over {P(A)}} = {1 \over 3} P(BA)=P(A)P(AB)P(B)=31
也就是贝叶斯公式

3、朴素贝叶斯基本原理

在这里插入图片描述
假设黑点为0,黄点为1,随便给一个点,判断P(X1,X2)的概率,若P1(X1,X2)>P0(X1,X2),那么给出的点就归类在1标签,反之也如此。

那么当P(X1,X2…Xn)为联合概率,也是如此。

就是说给定了的这些数据特征怎么样去计算它属于某一类别的联合概率是多少的问题。

4、训练数据

P ( B ∣ A ) = P ( A ∣ B ) P ( B ) P ( A ) P(B|A) = {{P(A|B)P(B)} \over {P(A)}} P(BA)=P(A)P(AB)P(B)
那么可以写成
P ( y i ∣ x ) = P ( x ∣ y i ) P ( y i ) P ( x ) P(y_i |x) = {{P(x|y_i )P(y_i )} \over {P(x)}} P(yix)=P(x)P(xyi)P(yi)
其中i表示分了多少类,比如分-1和1就是两类

P(AB)表示联合概率,如果两个是独立的,那么会等于P(A)·P(B)
那么就会得出
P ( A B ∣ y ) = P ( A ∣ y ) P ( B ∣ y ) P(AB|y) = P(A|y)P(B|y) P(ABy)=P(Ay)P(By)

其中从x来看,可能是多维的特征向量,就是说x会为(x1,x2,x3,…xn),那么当它们独立,就会得出:

P ( y i ∣ x 1 , x 1 , x 1 , . . . , x n ) = P ( x 1 ∣ y i ) P ( x 2 ∣ y i ) P ( x 3 ∣ y i ) . . . P ( x n ∣ y i ) P ( x ) P(y_i |x_1 ,x_1 ,x_1 ,...,x_n ) = {{P(x_1 |y_i )P(x_2 |y_i )P(x_3 |y_i )...P(x_n |y_i )} \over {P(x)}} P(yix1,x1,x1,...,xn)=P(x)P(x1yi)P(x2yi)P(x3yi)...P(xnyi)
那么假如给定数据判断=1的概率是多少时,然后再判断=-1的概率,算出来的概率都会除去P(x),所以就把P(x)忽略掉了,仅仅是需要比较大小,而并不是算特定的值。

P ( y i ∣ x 1 , x 1 , x 1 , . . . , x n ) = P ( x 1 ∣ y i ) P ( x 2 ∣ y i ) P ( x 3 ∣ y i ) . . . P ( x n ∣ y i ) P(y_i |x_1 ,x_1 ,x_1 ,...,x_n ) = P(x_1 |y_i )P(x_2 |y_i )P(x_3 |y_i )...P(x_n |y_i ) P(yix1,x1,x1,...,xn)=P(x1yi)P(x2yi)P(x3yi)...P(xnyi)

例子:
在这里插入图片描述
在这里插入图片描述
对于当出现0的情况,如果出现某一个值为零,那么总体概率相乘也就会等于0,这是不切实际的,只可能无限接近于0,就会引入拉普拉斯修正。

先验修正:
P ( y ) = ∣ D y ∣ + 1 ∣ D ∣ + N P(y) = {{|D_y | + 1} \over {|D| + N}} P(y)=D+NDy+1
似然修正:
P ( x i ∣ y ) = ∣ D y , x i ∣ + 1 ∣ D y ∣ + N i P(x_i |y) = {{|D_{y,x_i } | + 1} \over {|D_y | + N_i }} P(xiy)=Dy+NiDy,xi+1
N i {{N_i}} Ni 表示第i个属性的可能取值

在这里插入图片描述
处理连续型数据
在这里插入图片描述
假设
P ( y = 1 ∣ 1 , S , 0.48 ) = P ( x 1 = 1 ∣ y = 1 ) P ( x 2 = S ∣ y = 1 ) P ( x 3 = 0.48 ∣ y = 1 ) P ( y = 1 ) P({\rm{y}} = 1|1,S,0.48) = P(x_1 = 1|y = 1)P(x_2 = S|y = 1)P(x_3 = 0.48|y = 1)P(y = 1) P(y=11,S,0.48)=P(x1=1y=1)P(x2=Sy=1)P(x3=0.48y=1)P(y=1)
P ( y = 1 ∣ 1 , S , 0.48 ) = P ( x 1 = 1 ∣ y = − 1 ) P ( x 2 = S ∣ y = − 1 ) P ( x 3 = 0.48 ∣ y = − 1 ) P ( y = − 1 ) P({\rm{y}} = 1|1,S,0.48) = P(x_1 = 1|y = - 1)P(x_2 = S|y = - 1)P(x_3 = 0.48|y = - 1)P(y = - 1) P(y=11,S,0.48)=P(x1=1y=1)P(x2=Sy=1)P(x3=0.48y=1)P(y=1)
那么主要是求x1=0.48的时候该怎么求?
在这里插入图片描述
P ( x i ∣ y ) = 1 2 π σ y , i 2 exp ⁡ ( − ( x i − μ y , i ) 2 2 σ y , i 2 ) P(x_i |y) = {1 \over {\sqrt {2\pi \mathop \sigma \nolimits_{y,i}^2 } }}\exp ( - {{\mathop {(x_i - \mu _{y,i} )}\nolimits^2 } \over {2\sigma _{y,i}^2 }}) P(xiy)=2πσy,i2 1exp(2σy,i2(xiμy,i)2)

其中方差: σ y , i 2 \mathop \sigma \nolimits_{y,i}^2 σy,i2

均值: μ y , i {\mu _{y,i} } μy,i

就是将X1=0.48代入公式,然后根据y=1的值或者y=-1条件下的值求均值和方差,再代入公式得出结果。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
朴素贝叶斯算法是一种基于贝叶斯定理和特征条件独立假设的分类方法。它首先基于特征条件独立假设学习输入输出的联合概率分布,然后通过贝叶斯定理计算给定输入x时后验概率最大的输出y。 朴素贝叶斯模型是最为广泛应用的分类模型之一,与决策树模型相比,它有着坚实的数学理论基础。该模型假设特征之间相互独立,即给定分类变量,各个特征之间是条件独立的。这种假设使得朴素贝叶斯模型具有计算效率高、对数据要求低的特点。 在朴素贝叶斯模型中,不同类型的特征可以采用不同的概率分布模型。其中最常用的是高斯朴素贝叶斯模型,它假设数据的每个特征都服从高斯分布。根据这个假设,我们可以使用高斯分布的概率密度函数来计算给定类别下某个特征的概率。 总结来说,朴素贝叶斯模型通过学习特征条件独立假设和利用贝叶斯定理计算后验概率,实现对数据的分类。它具有计算效率高、对数据要求低的优点,并且可以根据不同的特征分布选择不同的概率模型。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [朴素贝叶斯算法(Naive Bayes) 原理总结](https://blog.csdn.net/chaojianmo/article/details/102589563)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [机器学习实战 - 朴素贝叶斯算法PDF知识点详解 + 代码实现](https://download.csdn.net/download/forever_bryant/85230992)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

侬本多情。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值