好文章!量表汉化发表了二区文章,交大护理学者是怎么做到的?

编者

我们启动护理临床论文的读书会,每周出2-4篇的护理文章学习,请有兴趣的朋友与我们联系(微信号xfanin1314),发表最新进展和最新解读文章。

近日,上海交通大学护理学院学者在BMC子刊发表了一篇护理类量表的文章,是一项关于类风湿关节炎(RA)患者疼痛评估工具的信效度检验研究,与各位做个分享,学习一下他们的研究思路!

2024年1月,一篇题为" Reliability, validity, and simplification of the Chinese version of the Global Pain Scale in patients with rheumatoid arthritis"的研究论文发表于BMC Nursing,文章属于中科院分区医学二区期刊,IF=3.189。

6a4663581e066ff3235ff689a651e282.png

研究使用了多中心、横断面的设计,纳入了580名RA患者进行调查。研究发现,中国版全球疼痛量表(C-GPS)在RA患者中具有良好的可靠性和有效性,可以用于评估这一人群的疼痛。此外,研究还提出了C-GPS的简化版本(s-C-GPS),该简化版本在忙碌的临床实践中可能更为适用。(然而,与许多简化测试版本的开发类似,s-C-GPS是从标准版本的量表中衍生出来的。因此,尚未作为独立测试进行验证,s-C-GPS的诊断准确性需要进一步验证。)

总体来说,这篇文章为RA患者疼痛评估工具的研究做出了重要贡献,但仍需要进一步的研究来验证简化版本的有效性和准确性。

 原文文献获取方式:

回复关键词“原文”即可免费获取文献

一、研究背景

1.疼痛是RA患者最常见和最早出现的症状。尽管炎症得到了最佳控制,但持续性疼痛通常是一个主要和常见的问题,约38.4%的患者持续经历中度至重度疼痛。

2.RA疼痛是由多种因素引起的,如炎症、继发性骨关节炎以及中枢和外周致敏,这可能导致心理不适、焦虑和抑郁风险增加、身体和社会功能下降以及医疗服务使用增加。

3.疼痛的管理和治疗是这一人群的重要临床问题,疼痛的标准化护理管理可以极大地造福于患者。

4.RA患者的临床监测指标通常不能反映患者经历的疼痛水平。因此,开发一种准确客观的疼痛评估工具不仅对于识别疼痛的存在而且对于评估影响疼痛的因素至关重要。

5.数字评定量表(NRS),口头描述量表(VDS)和视觉模拟量表(VAS)是评估RA患者疼痛的常用临床和研究工具。虽然这些量表易于使用,但它们具有单一维度,无法完全捕获RA患者疼痛的多维特征。

6.全球疼痛量表(GPS):是Gentile等人于2011年开发的多维综合疼痛评估工具,包括四个维度,包括疼痛、感觉、临床结局和活动。GPS已被翻译成土耳其语,西班牙语和中文,其可靠性和有效性已得到证实,并广泛用于研究和临床。然而,缺乏其在RA患者中应用的证据。有针对性地评估RA患者可以帮助揭示疾病特异性疼痛模式的新奇和复杂性,为个性化治疗和管理策略提供信息,并改善RA患者的生活质量。

二、研究目的

1.在中国文化背景下,缺乏有效且简洁的评估工具来评估RA患者的疼痛,因此需要验证全球疼痛量表(GPS)的中文版本(C-GPS)在中国类风湿关节炎(RA)患者中的可靠性和有效性。

2.使用基于IRT的计算机化自适应测试(CAT)分析来开发C-GPS(s-C-GPS)的简短形式,该系统根据每个受访者先前的答案和个性为他们量身定制条目。

三、理论支撑

全球疼痛量表(GPS)的开发和评估是基于经典测验理论(Classical Test Theory,CTT)和项目反应理论(Item Response Theory,IRT)进行的。经典测验理论用于评估C-GPS的有效性和可靠性,而项目反应理论则用于开发基于IRT的计算机化自适应测试(Computerized Adaptive Testing,CAT)分析,以提出C-GPS的简化版本(s-C-GPS)。

理论拓展

经典测试理论(CTT):经典测试理论是一种用于评估测量工具(如问卷或量表)信度和效度的方法。

  • 优点:操作简洁明了是其主要优点。

  • 缺点:它不能判断真实的项目难度参数和参与者的能力水平

项目反应理论(IRT):也称为项目特征曲线,是一种用于探索参与者对不同可测量项目的反应与其潜在特质之间关系的方法。

  • 与CTT相比,IRT可以通过拟合模型对每个被试的能力水平和测量误差进行评估。这取决于受试者的能力水平(潜在变量)和每个项目的特征。

  • IRT可以确定测量工具中各项的区分度和难度,帮助识别冗余的项目,并估计在能力水平每个层次上的测量误差。

  • 特别适用于改进个别项目或针对特定能力范围的情况。

这两种方法的结合使用有助于全面评估测量工具的信度、效度以及各项的区分度和难度,从而提高了研究结果的科学性和可靠性。

计算机化自适应测试(Computerized Adaptive Testing,CAT)是一种基于项目反应理论(Item Response Theory,IRT)的测验方法。在CAT中,测试系统会根据受试者之前的回答情况和能力水平,动态地选择下一个问题,以便更准确地评估受试者的能力。这种个性化的测试方法可以根据受试者的实际能力水平,精确地测量其能力,同时减少了测试的时间和疲劳感。

四、研究方法

1.研究设计:采用了多中心、横断面的设计

2.研究对象:通过便利抽样方法,招募了来自五家医院603例符合标准的RA患者参加本研究,其中580例(96.2%)被纳入分析。

3.缺失数据处理:对于缺失数据,采用了删除和替代的方法进行处理。

4.统计分析:连续变量使用中位数和四分位距以及均值±标准差来表示,分类变量使用构成比来表示。采用了Mann-Whitney U检验和Kruskal-Wallis H检验来检验组间差异。

5.效度和信度分析

  • 皮尔森相关分析和单结构因素分析被用来评估量表的结构效度

  • 使用Keiser-Mayer-Olkin(KMO)和Bartlett球度检验来检查量表是否适用于因子分析。

  • 基于因子结构中包含的变量,进行因子分析,并限制和提取一个公因子。根据因子载荷保留具有高负荷的条目。

  • 信度分析采用Cronbach系数α检验

  • 采用相关分析评价VAS量表与C-GPS量表的校标关联效度

6.IRT:使用R中的Itm包(v4.0.2; R Core Team 2021)估计IRT模型。使用Firestar 1.5.1对基于IRT的CAT进行了仿真。使用分级反应模型(GRM)获得项目参数和能力估计值。

7.C-GPS的简短版本是使用CAT分析开发的。

8.统计软件:研究采用了IBM SPSS Statistics 26.0和NCSS 12.0进行统计分析。

五、研究结果

1.s-C-GPS量表编制

C-GPS量表的具体条目、维度以及得分范围:C-GPS包含20个项目,分为四个维度:疼痛、情感、临床结果和活动。参与者使用11点评分表(从0到10)来提供他们的回答。如下表所示:

7d0978eea79dd742e406720e92f9a985.png

注:CAT,计算机化适应性测试; GPS,全球疼痛量表; s-C-GPS,中文标准版GPS的缩写形式; Y,是。

s-C-GPS所包含的五个维度和六个条目:

62b69e73673086af6d24574829bb5b3c.png

注:GPS,全球疼痛量表; s-C-GPS,标准中文版GPS的缩写

2.基于CTT的信效度分析:

  • 结构效度:C-GPS由疼痛、感觉、临床结局和活动四个维度,20个条目组成,可以准确反映RA患者的疼痛水平,维度不重叠。KMO和Bartlett球度检验结果(KMO:0.980,卡方统计量:15967.408,Bartlett显著性p < 0.001)表明总体相关矩阵具有公因子,完全适合进行因子分析。探索性因子分析显示所有测量项目的因子载荷均大于0.870,且所有载荷平方和超过80%,表明四个提取的因子合理,量表具有良好的结构效度。

  • 校标关联效度:VAS是国际公认的疼痛评估的金标准。s-C-GPS与VAS之间呈显著正相关(r = 0.570,p < 0.05),且r值略高于GPS与VAS之间的r值(r = 0.568),表明量表效标效度良好。

  • 信度:信度分析采用了Cronbach's alpha系数进行评估,结果显示C-GPS的四个维度和20个项目的α系数均大于0.700,表明该量表具有良好的信度。

3.IRT分析

IRT条目参数主要包括难度、区分度(discrimination)、猜测系数等,此外可能需要绘制项目特征曲线、项目信息函数曲线、测试信息曲线等。

(1)区分度和难度:图1为根据GRM模型估计的每个项目的区分度和难度级别,区分度在2.271(条目2)和3.312(条目14)之间,表明区分度较高,所有项目均表现出区分RA患者疼痛存在的良好能力。随着难度参数(横坐标)的增加,难度水平逐渐增加,表明疼痛严重程度更高。

6afa616be07010821b530adaa859edbe.png

图1  R软件(v4.0.2; R Core Team 2021)Itm包中所有20个项目的项目特征曲线

(2)条目贡献率:条目6、8、13、14和16提供了大量信息;项目1、4、7、10、11、15和19提供了中等信息量;项目2、3、5、9、12、17、18和20提供了少量信息。项目4、5、15、17、18、19和20提供了关于高至非常高水平的疼痛,而其他项目提供低至极低疼痛水平的信息。

233c7178218c1f386bb3bd5490994fc5.png

图2 R(v4.0.2; R Core Team 2021)中Itm包中所有20个项目的项目信息函数曲线

(3)C-GPS的项目信息和标准误差函数C-GPS的TIF显示了一条渐近曲线,其可靠性范围从θ值-0.9到3.5,从轻度到非常高的慢性疼痛水平。曲线的峰值对应于-0.9的θ值,显示出高可靠性值。因此,C-GPS对于轻度至非常高水平的慢性疼痛是可靠的,但对于低水平的疼痛则不可靠。

9dde7ba2f4665191efa06b6428b46ec5.png

图3 R(v4.0.2; R Core Team 2021)中的Itm包在分级响应模型(GRM)下的测试信息曲线。(注:水平轴表示潜在特质θ,θ的范围是-0.9到3.5,垂直轴表示在任何特质水平上测试产生的信息量和标准误。曲线的峰值对应于θ值为-0.9的高可靠性值,表明C-GPS对于轻度至非常严重的慢性疼痛是可靠的)

六、结论

C-GPS具有良好的信度和效度,可用于中国文化背景下RA患者疼痛的评估。包含6个项目的s-C-GPS具有良好的效标效度,可用于忙碌的临床疼痛评估。

后记

笔者认为这篇文章能够发表在高影响力期刊的原因可能有几个方面。

1、该研究采用了多中心、横断面的研究设计,使用了大样本量进行调查,这有助于提高研究的可信度和代表性

2、研究采用了严谨的统计分析方法,包括基于经典测试理论(CTT)和项目反应理论(IRT)分析以及计算机化自适应测试(CAT)分析,这有助于确保研究结果的科学性和可靠性。这对于临床实践具有重要意义,有助于提高疼痛评估的效率和准确性。

3、该研究还得到了多个基金项目的支持,进行了临床试验注册,通过了伦理审查,每一步都报告规范。这都是该篇文章能发高分期刊的原因。

综上所述,该研究在研究设计、统计分析、临床实践意义和学术支持等方面都具有较高的科学价值,这可能是其能够发表在高影响力期刊的原因之一。值得我们学习借鉴!

 原文文献获取方式:

回复关键词“原文”即可免费获取文献


本公众提供各种科研服务了!

一、课程培训

2022年以来,我们召集了一批富有经验的高校专业队伍,着手举行短期统计课程培训班,包括R语言、meta分析、临床预测模型、真实世界临床研究、问卷与量表分析、医学统计与SPSS、临床试验数据分析、重复测量资料分析、nhanes、孟德尔随机化等10余门课。如果您有需求,不妨点击查看:

发文后退款:2024-2025年科研统计课程介绍

二、数据分析服务

浙江中医药大学郑老师团队接单各项医学研究数据分析的服务,提供高质量统计分析报告。有兴趣了解一下详情:

课题、论文、毕业数据分析 

 临床试验设计与分析 公共数据库挖掘与统计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值