编者
我们启动护理临床论文的读书会,每周出2-4篇的护理文章学习,请有兴趣的朋友与我们联系(微信号xfainn1314),发表最新进展和最新解读文章。
我在参加多次护理临床预测模型的开题、审稿中,尤其是诊断预测模型,一个非常常见的问题,预测模型构建不仅滥用而且是误用。
大家先看这篇文章,我最后再做解读!
今天的解读的论文,是护理领域论文,写得很精彩,发表护理顶级杂志,为数不多的一区论文!
在医护领域,共情疲劳是一个亟待关注的问题。急诊科高风险、高强度、高压力的工作环境和意外创伤及暴力事件的频发,导致急诊科的护士更易出现共情疲劳。既往研究显示,大部分急诊护士存在中高度的共情疲劳,这会进一步导致其出现一系列身体、精神和工作相关症状,同时影响患者的护理质量、治疗效果和护患关系。现有量表可以评估共情疲劳症状,但对于识别高危人群效果仍然有限。预测模型可用于提前识别高危护士并制定防范措施,且目前共情疲劳预测模型研究较少,存在样本量小、变量单一、缺乏验证等问题。
2023年12月,一篇题为“Construction and evaluation of a predictive model for compassion fatigue among emergency department nurses: a cross-sectional study”的研究论文发表于《International Journal of Nursing Studies》,属于中科院分区医学一区,IF=8.1。
我们提供文献英文PDF,获取方式:回复关键词“原文”即可 |
本研究通过多因素Logistic回归分析明确了影响因素,在大样本数据基础上构建并全面评估了急诊护士共情疲劳风险预测模型,并构建直观易读的列线图(Nomogram),为开展个性化干预提供依据,现介绍如下。
一、研究摘要
背景:共情疲劳是医务人员长期暴露于工作相关创伤性事件压力而形成的一种综合征。急诊是一个高风险、高强度和高压力的科室,同时创伤及暴力事件频发。相较于其他科室的护理人员,急诊科护士更加容易受到共情疲劳的侵袭。共情疲劳不仅影响急诊护士的身心健康和职业满意度,还会对患者造成严重后果,如患者转归不良、医疗差错、住院期间患者死亡率增加等。
目标:本研究旨在构建和评价急诊科护士共情疲劳的预测模型。
研究设计:一项横断面研究。
数据来源:于2022年7月25日至2022年10月30日在华中、西南、华南和华东地区的21家三级医院(来自成都、重庆、贵阳、广州、上海)中招募的急诊科护士( N = 1014)。
研究方法:采用单因素及多因素logistic回归分析急诊科护士共情疲劳的潜在预测因素。根据预测因素构建列线图,采用Bootstrap法(1000次自助再取样)进行内部验证。最后,通过Hosmer-Lemeshow检验和校准曲线(Calibration)评价预测模型的性能。
研究结果:急诊科护士共情疲劳发生率高达75.9%。多因素logistic回归分析显示,工作岗位、职业满意度、饮食习惯、每日睡眠时间、职业压力、身体骚扰和工作环境暴力水平是急诊科护士共情疲劳的独立预测因素,并据此建立列线图模型。Hosmer-Lemeshow检验显示,预测模型校准良好(χ2 = 11.520, P = 0.174)。Bootstrap校正的列线图一致性指数为0.821 (95% CI: 0.791 ~ 0.851)。校准曲线显示预测概率与实际概率之间有较好的一致性。
研究结论:基于一般人口学特征、工作相关及生活方式特征、职业压力及工作场所暴力,构建了急诊科护士共情疲劳的预测模型,具有较好的预测能力。该模型能够识别急诊科护士共情疲劳的高危人群,为急诊科护士共情疲劳高危人群的早发现、早诊断、早干预提供了实证依据。
二、研究结果
1. 研究人群基线资料
对1014名参与者的人口学特征、工作相关信息和生活方式特征进行了描述性分析。结果显示,急诊科护士年龄范围为20 ~ 50岁(29.59±4.67)岁,多为女性,已婚,无子女,本科以上护理学历。只有26.8%的急诊科护士定期进行体育锻炼,16.5%的急诊科护士接受过心理健康方面的培训。
2.急诊科护士共情疲劳的发生现状
急诊科护士的共情疲劳患病率高达75.9%。
3.共情疲劳潜在预测因素的单因素分析
选择单因素分析中P值<0.05的因素,使用SPSS软件进行共线性诊断,在确认不存在共线性后,进行后续的多因素分析,包括年龄、婚姻状况、子女数、护龄、职称、工作岗位、用工形式、倒班情况、每日睡眠时间、饮食习惯等因素。
4.多因素logistic回归分析与共情疲劳相关的潜在预测因素
多因素logistic回归分析显示,工作岗位、每日睡眠时间与共情疲劳呈负相关;不良饮食习惯、职业压力、身体骚扰和高水平工作场所暴力与共情疲劳呈正相关。以上7个预测变量差异均具统计学意义。
5. 共情疲劳预测模型的构建
预测模型以列线图(Nomogram)形式呈现,用以定量预测急诊护士共情疲劳的风险概率。(根据原文提到的例子,在列线图上进行了标注)
6. 共情疲劳预测模型的评价
Hosmer-Lemeshow检验显示预测模型校准良好;
采用Bootstrap法对列线图进行内部验证;
校准曲线(Calibration)和一致性指数(C-index)结果表明,预测概率与实际概率高度一致。
后记
诊断预测模型呢,没错,护理比较用的多的,在横截面调查中,用一些简单的因子预测一个复杂的心理、生理现象,但是一个严重的问题,这些文章,往往用n多的量表,预测一个由量表得到一个“金标准”结局。
我觉得用量表作为评价结局无可厚非,但是你要用一个多个复杂的量表预测结局,那就是不了解诊断预测模型的意义。
所谓诊断预测模型,是在金标准诊断方法成本高、难以实现的情况下,一种代替品,既然要粗粗地辅助诊断,你诊断预测模型指标,必然是简单可调查,常见的一些客观选择题就可以凑成诊断预测模型。
但是,如果预测模型的预测因子是多个复杂的量表得分,那岂非是“用魔法打败魔法”了?
本来我们金标准的诊断方法就可以用量表的来实现,你现在我舍近求远,建立一个由更多量表的预测模型来代替它。这样的预测模型有何意义?为建模而建模罢了。
护理领域的诊断模型,这一点是非常非常重要!你要诊断,是让他填一份量表直接诊断好呢?还是填多份量表构建预测模型来预测好呢?
原文文献获取方式: 回复关键词“原文”即可免费获取文献 |
本公众提供各种科研服务了!
一、课程培训 2022年以来,我们召集了一批富有经验的高校专业队伍,着手举行短期统计课程培训班,包括R语言、meta分析、临床预测模型、真实世界临床研究、问卷与量表分析、医学统计与SPSS、临床试验数据分析、重复测量资料分析、nhanes、孟德尔随机化等10余门课。如果您有需求,不妨点击查看: 二、数据分析服务 浙江中医药大学郑老师团队接单各项医学研究数据分析的服务,提供高质量统计分析报告。有兴趣了解一下详情: |