全了!我的统计平台可以实现三大回归模型先单后多、多个模型分析合并一张表了...

额,又来介绍郑老师的大玩具了,免费的在线统计分析平台。

上个星期,我正式完善了利用logistic回归控制混杂偏倚的一站式工具。

各位!现在可以一口气构建多个回归模型,快速合并统计表格了,model1、model2、model3。。

现在我们同时还搞定logistic回归、线性回归、生存分析(包括Cox回归),我把它整合在一个链接上。

网址(或搜索“风暴统计”):

https://shiny.medsta.cn/con5/

或者

https://shiny.medsta.cn/con4/


老郑的免费平台虽然界面看起来很普通,但是可以无论线性、还是logistic还是Cox,都可以快速完成批量单因素回归、多因素回归、先单因素后多因素回归、多个模型分析策略:

  • 分组差异性分析后,挑选P值<0.05者纳入回归模型

  • 单因素回归分析后,根据P值,挑选纳入多因素回归模型‘

  • 研究者主动挑选协变量,直接开展多因素回归

  • 同时构建多个模型,开展回归分析,控制潜在混杂偏倚!

bcdeaae2fd1d8bc966e3650dde727efd.png

多个分析工具已经整合在同一个链接中

举例1:快速开展分组差异性分析

ad1ba2f5a41ff9a8d35d5b0a7dac3f9b.png

举例2:单因素回归+多因素回归(线性回归)

32158383853a363da14db4d4f9509df6.png

举例3:多模型策略(logistic回归)+脚注

f3582900ac51b1ddc3c9444cd2715097.png

举例4:生存曲线+Cox回归

295b640a8ce43661d96daa8288591f73.png

687f528fe8de53ee041130f7906d6746.png

就部署在本人开发的"风暴统计平台",一键完成匹配,一站式完成控制混杂因素研究,形成多模型分析的三线表结果!

这大大减少了绘制统计表的时间!

网址(或搜索“风暴统计”):

https://shiny.medsta.cn/con4/

https://shiny.medsta.cn/con5/


edc6be3a6194c1e81526d64acb90fec9.png

它的网址是www.medsta.cn/(在电脑端浏览器打开,位于“风暴智能统计”模块)

浏览器输入medsta.cn即可或者百度“风暴统计”

本平台上线的所有工具都是免费的, 目前的功能包括:

样本量计算正态性检验 | t检验 | 方差分析 

秩和检验 | 卡方检验 | 差异性分析带统计量

线性回归分析 | logistic回归 | Cox回归 

批量单因素分析 | 先单后多 | 临床预测模型 

 roc曲线 | 列线图 | 校准图 | DCA曲线

1. 欢迎交流


欢迎有意向开展数据分析的朋友加下方交流,也请提出宝贵意见,或者干脆加入我们制作队伍。。。

7750b8ba424b67cc09e227345acb7c1a.png

统计机器人交流群二维码

2. 操作介绍

比如,我想研究低出生体重(low,二分类结局)的影响因素,采用logistic回归分析。

1. 首先,导入数据(各位可以用示例数据试验下)

855741ba1f1ad93175701a9019672ae0.png

782d2ce1143c2a06679fee5e3791d214.png

2. 数据整理与转换

数据整理与转换包括4个功能,具体各位可以探索探索哈哈

1cef28cf62c402f8d3deabec5f4ff685.png

3. 探索性分析:一键批量差异性分析

本模块可以针对二分类的观察指标,一键开展差异性分析,下载三线表。所有差异性分析均有检验统计量。并且一键下载三线表的Word结果。

7915fc0e0cb9da513af6f838d5ae7e27.png

4. 接着可以开展多因素回归分析了。

自变量筛选有差异性法和单因素回归法

比如,我要研究吸烟对出生体重的影响。就要可以挑选差异性分析的协变量纳入模型,或者直接单因素回归挑选协变量。

866bb6e3e5d3f414aa63cd9a78677b3d.png

这样挑选协变量后,就可直接得到单因素回归、多因素回归、及两者结合的结果

36dc650d95e0dce82076e4459a5d532b.png

5. 多模型策略

多模型统计分析,在单模型统计分析的基础上,逐步增加自变量,通过增加回归模型的方式进行。

2ae1097e741cfb8e116e8ae39f50d1a3.jpeg

2a48faf5a3fa98b5b850ec722515c40a.png

比如比如我们构建三个模型;第一个模型是单因素logistic回归,则因变量是low,自变量是smoking,没有协变量。第二个模型,增加了协变量age,第三个模型,加上其它协变量。最终得到以下结果。

872278353131dd08a7d5cc8bf1521244.png

怎么样,这个结果能够接受吧!

多个模型分析结果显示,吸烟smoking对低出身体重low的影响具有统计学意义。

本公众提供各种科研服务了!

一、课程培训

2022年以来,我们召集了一批富有经验的高校专业队伍,着手举行短期统计课程培训班,包括R语言、meta分析、临床预测模型、真实世界临床研究、问卷与量表分析、医学统计与SPSS、临床试验数据分析、重复测量资料分析、nhanes、孟德尔随机化等10门课。如果您有需求,不妨点击查看:

发表文章后退款!2023年郑老师团队多门科研统计直播课程,欢迎报名

二、统计服务

为团队发展,我们将与各位朋友合作共赢,本团队将开展统计分析服务,帮忙进行临床科研。欢迎了解详情:

医学统计服务| 医公共数据库论文一对一指导

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值