回归分析主要研究目的可以归为三类:
探讨影响因素
控制偏倚
预测与分类
控制混杂的回归与探讨影响因素的回归,统计过程相似,但具体思路又有所不同,回归控制混杂分析中,无论焦点因素与结局是否存在关联,都会被纳入多因素模型。
其中有一种较为经典的结果表达方式——多模型法,一般通过2-5个回归模型,逐步调整混杂因素,一般如下图,只在表格中展示暴露的效应值与置信区间,较为精炼简洁,可以十分直观的展示暴露与结局的关联性!
但是绘制这样一份表格加上R语言与SPSS分析后汇总数据往往需要花费一定的时间,因此,这里为大家推荐一个统计分析小工具——风暴统计,可以快速完成多个回归模型的分析,直接生成三线表,避免了繁琐的整理工作!
风暴统计是由浙江中医药大学的郑卫军教授基于R语言开发的,不仅结果准确性有保障,并且全部实现菜单化操作,统计小白也可以轻松上手!
1. 进入风暴统计平台
首先,进入风暴统计平台,点击“风暴智能统计”—“回归控制混杂”—"最新版回归控制混杂"。
这里我们不再赘述数据的导入与整理过程,详细教程大家可以点击下方链接:
2. 多模型控制混杂
完成数据导入后,就可以直接来到多模型COX回归模型了。首先,在"模型变量选择"部分依次选入"因变量", "随访时间",”焦点因素“。
接着点击"增加调整混杂因素"。
model1就是我们的单因素模型,因此我们直接开始选择model2的协变量,推荐使用自定义,多个模型逐个调整变量。这里我们model2先矫正性别与年龄,接着,继续点击"增加回归模型"。
model2矫正的性别、年龄会自动顺延至model3。
另外,model3我们再额外矫正level和race。如需继续增加模型,可继续点击”增加回归模型“,最多可增至model5。
完成后,右侧就直接出现多模型的结果啦,包括脚注一应俱全!
然后也可以选择小数位数,默认情况下,P值为3位小数,其他统计量为2位小数。指定小数位数后,P值与统计量的小数位数将会统一。调整完成后,下载最终的三线表结果!
整个分析过程十分的丝滑快速!
如果您在风暴统计平台的使用过程中有任何的建议或疑问,可以加入我们的讨论群!群里郑老师与助教会在群内解答!
欢迎加入
统计机器人交流群