如何利用Cox回归快速构建多个模型,调整协变量?

本文介绍了回归分析中的多模型法,特别是如何通过风暴统计平台简化这一过程。风暴统计是一个基于R语言的工具,帮助用户快速完成数据导入、整理和多模型混杂因素控制,生成直观的三线表,提高分析效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回归分析主要研究目的可以归为三类:

  • 探讨影响因素

  • 控制偏倚

  • 预测与分类

控制混杂的回归与探讨影响因素的回归,统计过程相似,但具体思路又有所不同,回归控制混杂分析中,无论焦点因素与结局是否存在关联,都会被纳入多因素模型

其中有一种较为经典的结果表达方式——多模型法,一般通过2-5个回归模型,逐步调整混杂因素,一般如下图,只在表格中展示暴露的效应值与置信区间,较为精炼简洁,可以十分直观的展示暴露与结局的关联性!

但是绘制这样一份表格加上R语言与SPSS分析后汇总数据往往需要花费一定的时间,因此,这里为大家推荐一个统计分析小工具——风暴统计,可以快速完成多个回归模型的分析,直接生成三线表,避免了繁琐的整理工作!

风暴统计是由浙江中医药大学的郑卫军教授基于R语言开发的,不仅结果准确性有保障,并且全部实现菜单化操作,统计小白也可以轻松上手!

258234529066fad6ccf861aa908fd59a.jpeg

854edcffba4afab029c4db32fbb1505f.jpeg

1. 进入风暴统计平台

首先,进入风暴统计平台,点击“风暴智能统计”—“回归控制混杂”"最新版回归控制混杂"

这里我们不再赘述数据的导入与整理过程,详细教程大家可以点击下方链接:

详细指南!风暴统计如何高效导入数据,统计分析快人一步?

详细版!如何利用风暴统计进行数据的整理转换?

1fb0dc516f114e10e9f8afd72f5252a1.png

2. 多模型控制混杂

完成数据导入后,就可以直接来到多模型COX回归模型了。首先,在"模型变量选择"部分依次选入"因变量", "随访时间"”焦点因素“

0a5f4760362095f224625b1c3ec631f9.png

接着点击"增加调整混杂因素"。

ba9451f1581d1195be0145bdcc4bcb38.png

model1就是我们的单因素模型,因此我们直接开始选择model2的协变量,推荐使用自定义,多个模型逐个调整变量。这里我们model2先矫正性别与年龄,接着,继续点击"增加回归模型"。

a860b4306be0e3c6d08c9ead80a37bc7.png

model2矫正的性别、年龄会自动顺延至model3。

另外,model3我们再额外矫正level和race。如需继续增加模型,可继续点击”增加回归模型“,最多可增至model5

f9591d4867cd30b2b1e45720065867bb.png

完成后,右侧就直接出现多模型的结果啦,包括脚注一应俱全!

a637994f8f72308fbfbd2bc5f2bd7898.png

然后也可以选择小数位数,默认情况下,P值为3位小数,其他统计量为2位小数。指定小数位数后,P值与统计量的小数位数将会统一。调整完成后,下载最终的三线表结果!

整个分析过程十分的丝滑快速

f404046bacdb75c83be79cbd7972eba8.png

如果您在风暴统计平台的使用过程中有任何的建议或疑问,可以加入我们的讨论群!群里郑老师与助教会在群内解答!

欢迎加入

4879e83d5c960e207633c363c3c44826.png

统计机器人交流群

1ea636b55ccac5b832ff3b8554eeeb4d.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值