公共数据库+预测模型=SCI二区!这篇预测模型论文写得很规范

详情请点击下方:

没有数据,没有实验条件怎么发表SCI论文?欢迎参加孟德尔随机化方法培训班!!!


想学习如何构建预测模型的一定要看这篇文章!到2023年,抑郁症已成为全球疾病负担的首位,特别是中老年残疾人,往往有更严重的抑郁倾向。中国学者使用CHARLS数据库构建了中国中老年肢体残疾者抑郁的预测模型,筛选出与抑郁高度相关的预测变量。

该模型的构建可以帮助临床工作者快速筛选出患抑郁症风险较高的中老年人肢体残疾人群,从而实现对抑郁症的早发现、早干预、早治疗。

2024年4月23日,山东大学的学者用CHARLS数据库,在期刊BMC Public Health(医学二区top,IF=4.5)发表了题为:“A predictive model for depression in Chinese middle-aged and elderly people with physical disabilities”的研究论文,本研究旨在开发一个抑郁预测模型,基于中老年人抑郁的危险因素评估中国中老年人身体残疾患抑郁症的可能性,以便为抑郁症高风险的身体残疾中老年人提供早期识别、干预和治疗。

65b0f971b186cac24db0f5ababf0812d.png

本公众号回复“ 原文”即可获得文献PDF等资料

根据分析,研究团队得出了以下结果:

  • 老年人(65岁以上)的抑郁症患病率高于中年人(45~65岁)。

  • 对于中年组,在45 ~ 50岁之间,年龄是保护因素,大于50岁是危险因素,并且随着年龄的增长相关性更强。年龄越大,相关性越弱。

下面我们一起来详细看看!

主要研究结果

1.研究设计

本研究选取中国健康与退休纵向研究(CHARLS)2015年至2018年的数据,最终共纳入1052名45岁以上有身体残疾的参与者。  

  • 抑郁评估:流行病学研究中心抑郁量表(CES-D10),量表包含10个项目,每个项目得分:0(很少或根本没有),1(有时),2(大部分时间),3(所有时间)。总分在0~30分之间,评分≥10分定义为抑郁症。

  • 中老年人的定义:45~65岁的为中年人,65岁以上的为老年人。

  • 身体残疾人群肢体残疾定义为由于肢体残疾或肢体躯干瘫痪或畸形导致人体运动系统不同程度的功能丧失或功能障碍。

7a987c1cd7aeae219ac7bdb64bb7d2e9.png

    

2.基线特征

研究共纳入1052名有身体残疾的老年人,其中497人未患抑郁症(47.2%),555名患有抑郁症(52.8%)。

  • 结果显示,中国中老年残疾人士的抑郁症患病率超过50%80%以上的抑郁症患者生活在缺乏医疗保护的农村地区。

b777123a0faf9ae5cd8abb4e753838e4.png

3.年龄和抑郁的关联

研究者绘制了年龄与抑郁之间的限制性立方样条回归模型对于中年组,年龄在45 ~ 50岁之间是保护因素,大于50岁是危险因素,并且随着年龄的增长相关性更强。年龄越大,相关性越弱。

  • 中年组(45~65岁)648人,其中335人(51.6%)患有抑郁症。

  • 老年组(65岁以上)共有404人,其中220人(54.5%)患有抑郁症。

6ba8adc7ead566b98c2b4fdd7d2bf01e.png

注:

实线表示ORs(优势比),阴影形状表示95% CI(置信区间)

4.LASSO回归分析结合二元logistic回归分析筛选预测变量

在LASSO选择路径图(图3A)中,显示了λ的两个具体值:lambda.min和lambda.1se。

  • LASSO路径图如图显示,随着系数的降低,预测因子也相应降低。研究团队基于lambda筛选了22个预测变量。

26039a8eb8e423993fb2bfe4fecfcd67.png

将经由SPSS软件筛选的18个具有统计学意义的预测变量纳入二元logistic回归分析,将有序分类变量设为协变量,结果如下表所示。

51ed51c3c9cf39dcd58b34c663f5be21.png

6cfc614151ad913c9847d7e1adae8d14.png

  • Hosmer-Lemeshaw检验显著性为0.819,表明模型拟合良好。

根据P<0.10的原则,我们从表中筛选出性别、居住地址、近视、听力、未来可能有助力、过去一年是否酗酒、上厕所困难、准备热餐困难、残疾无法工作共9个变量来构建模型。

5.中国中老年肢体残疾者抑郁预测模型的构建与验证

在确定了构建中国肢体残疾中老年人抑郁预测模型的最终变量后,我们在Rstudio中使用“rms”包构建模型,并使用包中的“nomogram”函数生成列线图。

a2e33f5696045324dc5a130a3dda201a.png

  • 中国中老年人躯体残疾抑郁预测模型的ROC曲线下面积为0.714 (95% CI: 0.673 ~ 0.751),如图B所示。

  • 模型的召回率为0.655,精确率为0.692,F1_score为0.672,Brier评分为0.213。平均校准曲线的绝对误差均值为0.016,如图C所示。

cc12f15b07a35ef7c334b67e7db5e790.png

  • DCA曲线显示,在较宽的阈值范围内,使用包含9个预测变量的模型比使用单个预测变量的模型具有更高的垂直坐标值。这表明本研究构建的预测模型具有更大的增益,见图D。

  • 净增益曲线显示,使用预测变量的患者发生抑郁的风险较高,见图E。

7c67eb2bb6dbd8b3a05524fee55d43a3.png

内部验证的结果如下图:

  • ROC曲线下面积为0.716,见A。校准曲线的平均绝对误差为0.018,见图B。

4f0a72e40fb4506292cc313a4178f32e.png

外部验证的结果如下图:

  • ROC曲线下面积为0.716 (95% CI: 0.660-0.772),如图A所示。校准曲线的平均绝对误差为0.016,如图B所示。

e7950f97e7d5daed5e22fe6dea9eafd4.png

统计学方法

1.LASSO回归分析结合二元logistic回归分析筛选预测变量

我们将数据集随机分为训练集和验证集,比例为7:3。在训练集中,我们使用R软件包“glmnet”(版本4.2.2)进行LASSO回归分析。对训练集中的变量进行初步筛选后,使用SPSS (version 26)对上述变量进行二元logistic回归分析

898f187ecdeb0d8be6afba6858ec5403.png

2.使用函数构建模型

筛选中国中老年肢体残疾抑郁预测模型的预测变量后,我们利用设计包中的lrm函数在Rstudio中构建模型。我们使用“rms”包中的“nomogram”函数将模型可视化。

e06f3d8accda31fe3a2659aa0f2b6903.png

3.校准曲线

使用校准曲线评估预测模型的校准性能。通过比较实际观测值与模型预测值之间的关系,有助于研究人员了解模型在不同概率区间下的预测精度水平。

58e93ad8605ce0c6b21239db0eb3e6de.png

4.决策曲线

使用决策曲线分析(DCA)来进一步评估评估不同阈值下分类模型决策性能的图形化工具,权衡分类模型的预测结果,确定最适合决策的阈值。

745f94a6c62b8d7ee62d488926812792.png

5.内部验证

内部验证是模型开发的必要步骤,其意义在于量化所开发模型的预测性能。本研究采用Bootstrap重采样方法进行内部验证。

99576714e2f7159eef0a22f1ba300100.png

6.外部验证

使用验证集中的C-index校准曲线对模型进行外部验证。

8dcac8cc14f34b7663641aac3b28b307.png

本公众号回复“ 原文”即可获得文献PDF等资料

后记

少有学者采用CHARLS数据库构建预测模型,但本文非常规范!对中老年肢体残疾者构建抑郁预测模型,发文二区!

本文的统计学方法步骤清晰,研究思路明确,方法也较为详细。先用LASSO回归分析结合二元logistic回归分析筛选变量,将具有统计学意义的变量纳入函数,绘制列线图,构建模型。然后对模型进行评估和验证,依次使用校准曲线、DCA分析、内部验证和外部验证来评估模型的可靠性。

如果你有对预测模型感兴趣,或有思路但不知道如何开展,不妨来看看郑老师团队开设的预测模型一对一学习指导,全程数据分析指导!!


详情请点击下方:

郑老师课程 | 医院临床数据分析与预测模型私教班,1V1全程指导! (qq.com)

智慧消防安全与应急管理是现代城市安全管理的重要组成部分,随着城市化进程的加速,传统消防安全管理面临着诸多挑战,如消防安全责任制度落实不到位、消防设施日常管理不足、消防警力不足等。这些问题不仅制约了消防安全管理水平的提升,也给城市的安全运行带来了潜在风险。然而,物联网和智慧城市技术的快速发展为解决这些问题提供了新的思路和方法。智慧消防作为物联网和智慧城市技术结合的创新产物,正在成为社会消防安全管理的新趋势。 智慧消防的核心在于通过技术创新实现消防安全管理的智能化和自动化。其主要应用包括物联网消防安全监管平台、城市消防远程监控系统、智慧消防平台等,这些系统利用先进的技术手段,如GPS、GSM、GIS等,实现了对消防设施的实时监控、智能巡检和精准定位。例如,单兵定位方案通过信标点定位和微惯导加蓝牙辅助定位技术,能够精确掌握消防人员的位置信息,从而提高救援效率和安全性。智慧消防不仅提升了消防设施的管理质量,还优化了社会消防安全管理资源的配置,降低了管理成本。此外,智慧消防的应用还弥补了传统消防安全管理中数据处理方式落后、值班制度执行不彻底等问题,赋予了建筑消防设施智能化、自动化的能力。 尽管智慧消防技术在社会消防安全管理工作中的应用已经展现出巨大的潜力和优势,但目前仍处于实践探索阶段。相关职能部门和研究企业需要加大研究开发力度,进一步完善系统的功能与实效性。智慧消防的发展既面临风险,也充满机遇。当前,社会消防安全管理工作中仍存在制度执行不彻底、消防设施日常维护不到位等问题,而智慧消防理念与技术的应用可以有效弥补这些弊端,提高消防安全管理的自动化与智能化水平。随着智慧城市理念的不断发展和实践,智慧消防将成为推动社会消防安全管理工作与城市化进程同步发展的关键力量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值