详情请点击下方:
医学统计服务:课题、论文、毕业数据分析 | 临床试验设计与分析 | 公共数据库挖掘与统计
在结局是二分类数据的临床研究中,许多研究者通常会首先想到使用logistic回归来控制混杂变量,计算获得调整优势比(aOR)作为调整相对危险度(aRR)的估计值,反映暴露对结果的关联性。然而这样做却忽略了一个基本的假设:即只有在研究的结局事件较为罕见的条件下OR才近似等于RR;反之当结局事件的发生率较为常见(>10%)时OR往往会明显地高估或低估真实的RR值,这时直接计算RR值较为恰当。
我们的公众号在今年3月22日——修正Poisson回归法提出20周年之际,就曾介绍过采用修正Poisson回归法计算RR值,这一方法通过采用“三明治法”( sandwich variance estimator) 矫正标准误差后,从而获得比较稳健的误差估计值,可应用于发生率较为常见 ( >10 %) 二分类结局的临床研究。
20年前,一种新的统计技巧被提出来,如今已广泛应用!今天我写点文字谈谈
运用修正Poisson 回归模型对服从二项分布的资料进行分析能给实际研究带来很多便利,目前这种方法在诸多前瞻性队列研究案例中已得到广泛应用。不仅如此,借助修正Poisson回归,我们可以在现况调查计算PR值,在队列研究和随机对照研究中计算RR值,获得比logistic回归更精确的效应估计值!
R语言做修正poisson回归
在此前发表的介绍修正poisson回归的论文中,主要是介绍了基于SAS软件GENMOD过程的REPEATED语句实现修正poisson回归。我们都知道SAS是付费的商业软件,那么如何使用开源免费的R语言来实现修正possion回归呢?
在今年1月,R新发布了rqlm包,这款R包能够对二元结果进行修正poisson回归和最小二乘回归分析。此函数的处理方式与 lm 或 glm 类似,可通过family指定对二元数据进行模型拟合。此外,通过指定eform,可以将得到的系数和置信限转换为指数尺度。标准误差估计使用三明治包的标准鲁棒方差估计器进行计算。
rqlm包进行修正poisson回归的具体代码举例如下:
data(exdata02)
rqlm(y ~ x1 + x2 + x3 + x4, data=exdata02, family=poisson, eform=TRUE)
# 修正Poisson回归分析
# 系数估计转化为风险比率(RR)标度
案例文献分享
上文有提到,除了队列研究,修正poisson回归在随机对照的临床试验中的运用也逐渐增多,下文就以具体的临床试验为例子,学习修正poisson回归在临床试验中的应用吧。
这是一篇发表于《JAMA Oncology》(医学一区,IF=28.4)的随机、双盲、安慰剂对照临床试验的二次分析,标题为 “Impact of Common Vitamin D–Binding Protein Isoforms on Supplemental Vitamin D3 and/or Calcium Effects on Colorectal Adenoma Recurrence Risk: A Secondary Analysis of a Randomized Clinical Trial”。
临床试验设计
P(人群):2259 名最近诊断出腺瘤且在完成结肠镜检查后无残留息肉的受试者
I (干预):每日维生素 D3(1000 IU)
C(对照):四臂设计——每日维生素 D3(1000 IU)、每日钙(1200 毫克)、每日钙+维生素 D3、安慰剂;二臂设计——每日钙(1200 毫克)、每日钙+维生素 D3
O(结局):在 3 至 5 年的随访中诊断出一种或多种腺瘤
R(随机化):按 DBP2 编码等位基因数量随机化分层
研究入组和随机化流程图
在这项研究中,对于主要结局指标——在 3 至 5 年的随访中诊断出一种或多种腺瘤的分析,研究者根据DBP亚型,使用修正泊松回归分析,治疗效果以风险比(RR)和95%的置信区间进行估计。
主要结果
最终,研究对主要结局指标的分析如下:
表 根据 DBP2 同工型编码 rs4588*A 等位基因(假设显性遗传模型),补充维生素 D3 和/或钙对 1604 名参与者的腺瘤复发风险的影响
注释:
a.治疗分配与 DBP2 之间相互作用的 Wald 检验(主导模型;编码 0、1);
b. RR 是在根据年龄、性别和钙治疗分配进行调整的泊松回归模型中估计的;
c.在根据年龄、性别和维生素 D3 治疗分配进行调整的泊松回归模型中估计 RR,选择服用钙补充剂的女性(即参与两组随机分组的女性)被排除在这些分析之外;
d.在针对年龄和性别进行调整的泊松回归模型中估计 RR。
后记
对于常见结局事件的非独立前瞻性研究,使用修正 Poisson 回归法来计算暴露因素的 RR值是一种较为简单准确的分析方法,目前已经可以利用 SAS 软件中的 PROC GENMOD 程序和R的rqlm包来实现。
详情请点击下方: