临床预测模型工具完整版今天正式上线,Cox+logistic回归,一键搞定预测模型4图3表!...

详情请点击下方:

零基础两天学会R语言构建临床预测模型


之前我陆续发布了Cox和logistic回归 预测模型。

临床预测模型最新版工具来了!3分钟建模+验证,一键生成临床预测模型4图3表

但之前的并非完整版,主要常见的统计图ROC,列线图缺少参数调整的灵活性,也无法下载高清的图片。

这样两周我们逐一把bug进行了修复,把功能进行完善,现在推出logistic和Cox预测模型正式完整版!

Cox+logistic回归临床预测模型功能

1. 数据导入与整理

2. 随即拆分为训练集、验证集

3. 训练集与内部验证人群特征差异性比较

4. 批量单因素回归

5. 根据P值挑选自变量纳入模型

6. 逐步回归筛选自变量

7. 形成回归三线表,一键下载word报告

8. 自动列线图、校准图、Roc曲线图、DCA图。

9. 一键下载临床预测模型高清四图

最大的修改便是统计图可以通过调整参数更加精美,且可以下载了!!!!

就部署在本人开发的"风暴统计平台"

78cd7d2be644a1eab24ffc4b3a251c93.png

它的网址是www.medsta.cn/(在电脑端浏览器打开,位于“风暴智能统计”模块)

浏览器输入medsta.cn即可或者百度“风暴统计”

本平台上线的所有工具都是免费的, 目前的功能包括:

样本量计算正态性检验 | t检验 | 方差分析

秩和检验 | 卡方检验 | 差异性分析带统计量

线性回归分析 | logistic回归 | Cox回归 

批量单因素分析 | 先单后多 | 临床预测模型 

 roc曲线 | 列线图 | 校准图 | DCA曲线

临床预测模型链接

https://shiny.medsta.cn/logpre1/

https://shiny.medsta.cn/logpre2/

9b136c50a70706031f65d6d97b9f995a.png

1、欢迎交流

欢迎有意向开展数据分析的朋友加下方交流,也请提出宝贵意见,或者干脆加入我们制作队伍。。。

6e974da962e773cded3d5a7fd5202e71.png

统计机器人交流群二维码

2、操作介绍

比如,我想研究肺癌患者的相关因素因素,采用Cox回归分析,采用R语言survial自带的数据集lung

首先,导入数据(各位可以用示例数据试验下)

5742ffa1fde6aaad511b12b5d0d0b179.png

Cox回归之前,我们可以对变量值和变量值进行整理转换,比如我对性别变量值,男性和女性打标签(绘制列线图需要!)

60cecb4ef2a9f96d578061345771c731.png

拆分为训练集、验证集

eb18c8b3a9dcf58f53a15d3278df64b9.png

进行训练集与内部验证人群特征差异性比较

383a6fd83ec3f7682343baa2facab013.png

59e5b4b339083489a16fd0a6f200d5f2.png

然后,开展Cox回归

我们可以选择逐步回归法开展多因素回归、我们自己可以设置,根据P值来判断哪些单因素回归的结果将选择进来开展多因素回归

f2fbb08a53d6e642dc30ae28c7887666.png

立即可以显示批量单因素回归分析的结果!

12c96c93170a7040aa9e689fa41e97b5.png

以及多因素回归

2ba680d4d9c9db1016733c80329e62f9.png

以及两者的结合

3f8b2061f9f15779b7bd4d31548fba50.png

Cox回归做好了,预测模型4图也自动产生,而且可以分时间点绘制分图

a99147908a953a8452727764a4702638.png

944edb55fb2ae5bb0049d54c9347b21e.png

5f534f6d92bcd30278ae3b3abfe433b2.png

cdd0a7bd9762cb8bc5fd6b3b181e9d47.png

最最重要的是,可以一键导出word版的表格!

90b2a80170c5215b87725b7931b2947b.png

本周更新到此结束,欢迎各位多提提意见,新的更新,下周一见!

6b29079a8fb427e8249ccff892e308f3.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值