真实世界研究中,重叠加权法为何最优秀?

直播预告

2.22-23日,“真实世界研究前沿方法”课程开课,支持预报名!

真实世界研究有哪些前沿新技术?

真实世界研究大多是观察性研究,不同于临床试验通过随机化来确保不同治疗组患者特征具有可比性,观察性研究必须尝试对差异(及混杂)进行调整。

虽然传统的多因素回归等方法也可以帮我们控制混杂,但仍存在一些局限性。目前,最主流的减少混杂偏倚的方法,还得是倾向性评分(PS)法。

  • 简单来说,PS就是根据测量的协变量,计算每个个体被分配接受感兴趣治疗的概率;

  • 作为一个用于综合需要调整变量的分数,综合完之后我们还要用传统的方法去调整倾向性评分,常用的方法有匹配、加权、调整以及分层4种。

其中最强的,必然是倾向性评分加权法。准确来说,应该是重叠加权(Overlap Weighting,OW)。

重叠加权(OW)法为何最优秀?

重叠加权(OW)作为一种倾向性评分(PS)方法,可以模拟随机临床试验(RCT)的重要属性,即临床相关的目标人群、协变量均衡和精确度。

  • 目标人群是指得出结论的患者群体;

  • 均衡是指在治疗过程中患者特征的相似性,这是避免偏倚的重要条件

  • 精确度表示对治疗和相关结果之间关联的估计的确定性,更精确的估计有更窄的置信区间(CIs)和更强的统计效能

举个例子

医学顶刊《JAMA》曾发表过一篇题为:“Association of Real-time Continuous Glucose Monitoring With Glycemic Control and Acute Metabolic Events Among Patients With Insulin-Treated Diabetes”的研究论文,旨在评估进行实时连续血糖监测(CGM)对接受胰岛素治疗的糖尿病患者的临床疗效。

0b78028357fc01783d9789d04856402e.png

如果你需要全文,请公众号后台回复关键词“pdf”。如果您想学习更多关于重叠加权的课程,请关注我们的“真实世界研究前沿方法”直播,感兴趣的可联系郑老师团队,进行预报名!详情可咨询助教,微信号:aq566665

为什么选择使用重叠加权(OW)法?

与随机试验不同,基于观察性数据的比较效果研究的有效性可能受到混杂因素(例如适应症混杂)的影响。

为此,研究团队在设计阶段采用了基于倾向性评分的重叠加权(OW)法,通过赋予预测暴露可能性较低接受CGM的患者和预测暴露可能性较高未接受CGM的患者更大的权重,从而增强这些个体对结果的影响。

具体来说:

  • 接受CGM的患者的重叠权重=1-PS;

  • 未接受GGM的患者的重叠权重=PS。

在本研究中,重叠加权用于平衡暴露组和对照组之间在治疗模型中指定的协变量。

该研究从北加州综合医疗保健系统中共纳入了41,753名接受胰岛素治疗的糖尿病患者(包括5,673名1型糖尿病患者和36,080名2型糖尿病患者)。

最终,共3,462名 1 型糖尿病患者和344名 2 型糖尿病患者接受持续血糖监测(CGM)治疗,划分为暴露组(n=3,806);剩余的2,211名 1 型糖尿病和35,736 名 2 型糖尿病患者为对照组(n=37,947)。

两组间的基线极端不平衡,例如,与对照组相比,暴露组的患者更有可能患有 1 型糖尿病,基线年龄和糖尿病发病年龄更年轻,合并症更少等。

而在重叠加权后,

  • 1型糖尿病患者的基线特征在暴露组和对照组之间达到了精确平衡(|d|<0.1);

  • 而对于2型糖尿病患者,少数基线特征仍存在不平衡(|d|≥0.1),这些特征被作为协变量纳入双重差分模型中。

通过重叠加权,实时CGM使用的预期(预测)可能性(由倾向性评分表示)在暴露组和对照组之间的分布趋于相似。

69424418f51d623b81775c3cbaf62150.png

图1 全队列中倾向性评分的镜像密度图 

(A)重叠加权前;(B)重叠加权后

可以看到,原本两组的倾向性评分差异较大,分布不平衡;而在重叠加权后,两组的分布实现了良好的平衡,研究结果也更为可靠。

在真实世界研究中,如何避免或者减少偏倚是得出有效结论的关键。今天我们就着重讲述了重叠加权法,如果您想了解更多关于混杂因素控制的方法,不妨参加2.22~23日,郑老师团队的真实世界研究方法与高级统计技术”直播课程吧!

课程优势

相比网络上2000-3000元课程,我们的课程:

从0到1构建RWS知识体系、理论+实操

真正零基础,由浅入深,集中式培训、从基础概念到高级技术,循序渐进,全面提升你的研究能力。丰富的案例分析与实战演练,确保你能够学以致用。

⭕️前沿方法,系统教学

目前市面上鲜有对于“目标模拟试验(模拟RCT)”、“倾向性评分重叠加权(Overlap Weighting, OW)”方法的系统教学,之前也是有很多学员反应想要学习该内容,所以我们新一期直播课程郑老师赶紧安排上图片

⭕️全套课程材料赠送

全套资料免费赠送,包括1000多页的PTT和“本课程”所需要的相关数据及软件!赠送全套倾向性得分匹配实操视频(R语言与SPSS)


⭕️直播+录播,内容全面

涵盖回顾性临床研究数据分析国际认可的方法:多重填补缺失数据、倾向得分匹配、敏感性分析、DAG方法、限制性立方条样图等。在线学习,随时随地参与课程,不受时间和地点限制。本课程内容将涵盖更广的观察性研究、真实世界临床研究的设计与数据分析。SCI发表不在话下。

⭕️课后习题测试,巩固学习

独一无二的真实世界研究选择题测试,巩固练习,让你更快更好的掌握知识点!

⭕️视频永久有效+1年答疑

⚠️ 课程视频永久回放,课程群答疑+1到2周1次统计问题直播答疑,答疑时限1年,课程结束后,确保学习效果,帮助学员提升!

培训内容

培训时间

✅2025年2月22日-23日(早上8:30-下午17:30)

培训方式

小鹅通线上直播+录播回放开展培训

(届时直播链接将会发送到课程群,购课以后请联系助教拉群,助教联系方式请看文末)

培训内容

真实世界临床研究直播内容(2.22-23)

图片

△以上为大致的课程内容,实际内容会略有出入

真实世界临床研究2024年直播回放版视频内容

图片


倾向性得分匹配全套实操
录播视频(R+SPSS)

图片

主讲讲师

👨🏫郑卫军老师

本公众号的主持者、主要撰稿者。浙江中医药大学公共卫生学院医学统计学教研室主任。浙江省预防医学会卫生统计学专业委员会副主任委员。主要从事流行病学与统计学方法教学与研究,在公共卫生大数据、临床试验统计学方法、真实世界临床研究统计方法方面具有丰富的经验。

此外,本课程将由其它老师和统计师分担2-4个小时的课程。

课程费用


1. 
单独购买本课程(长期会员)

真实世界临床研究(临床回顾性数据分析)  799元

真实世界研究R语言1对1指导   4990元

关于1对1指导的内容,各位可以点击下方了解

郑老师团队指导 | 一对一R语言指导!

2.任选组合课程购买(长期会员

这几年,郑老师团队相继开设了多么临床科研设计与统计课程,如果您需要,选择多门课程,有更多优惠,最高优惠50%左右

4课:2490元

6课:2990元

8课:3490元

10课:3999元

注:购买10门长期会员任选者,赠送价值899元的2024-2025开设的新直播课程一门或等值优惠券。

其它课程介绍请点击下方链接:

培训通知:2024-2025年科研统计课程培训通知

3.如果你目前有相应的课题经费,需要今后几年培养更多的学生,我们将推出“4999”的课程,包括2024年,2025年所有价值999元以内的课程(或999元的优惠券1张)。

目前所有14课+2025的直播课:  4999元

注:有疑问可以咨询助教,助教微信号:aq566665

4.对于长期会员,1年定期安排直播答疑(1-2周一次),所有回放视频永久!

5. 目前,全部课程包括真实世界研究、R语言、Meta分析、SPSS课程、重复测量资料分析、临床试验数据分析、临床预测模型、NHANES公共数据库挖掘,GBD公共数据库挖掘,孟德尔随机化方法课程(初级班+高级班)、机器学习均可马上观看课程回放视频。

课程购买方式与咨询

咨询付款方式👇

  • 可以添加下方助教微信咨询详情,扫描购课二维码购课。

  • 可开技术服务费、培训费、咨询费等发票;可出具课程学习通知,方便报销,可以对公转账。

图片

 助教二维码,联系咨询

图片

  购课二维码,直接购买


本公众号的宗旨是“让天下没有难学的统计学!”,我们的目标是,大家真正从这里学到了统计学。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值