郑老师的风暴统计Zstats2025年度首次更新,带来了大家期待已久的阈值效应分析!
阈值效应分析和RCS曲线都是研究非线性关系的方法。风暴统计平台很早就上线了RCS非线性分析功能,大家使用过程中问的最多的问题就是:RCS曲线中的拐点怎么计算?
其实RCS曲线并不能计算拐点,曲线中看似起到转折作用的点,只是分位数点,不具有参考价值,RCS曲线从P for nonlinear值来判断非线性关系就够了。
那有些文章中给出参考线,还有回归效应值的结果是如何得出的呢?
没错!这就是阈值效应分析的结果啦!
阈值效应简单来说,就是当自变量超过某一点后,对因变量作用的大小发生变化的现象。通过阈值效应分析,我们可找到明显影响变量间相关性的重要拐点(inflection point),还可深入探索拐点前后,自变量和因变量间是否还存在相关性。
今天我们就详细介绍一下风暴统计新功能——阈值效应分析!
Zstats
√ 浙中医大统计老师郑卫军主持
√ 基于R语言软件开发
√ 免费使用,无需注册直接使用
√ 一键生成发表级图表
www.medsta.cn/software
(电脑端浏览器打开)
阈值效应分析模块链接:http://zstats.medsta.cn/yuzhi/
1.平台实操流程
首先,根据我们的研究需要,选入我们的结局变量、暴露变量。
结局变量支持二分类、定量连续、生存资料
暴露变量必须是连续型变量哦!
如果需要调整协变量,可以直接一键勾选,满足多样的分析需要!
阈值效应分析在设置完成后,必须要"点击分析"平台才会给出结果哦!
2.结果解读
那么阈值效应分析结果应该如何解读呢?这里也简单和大家介绍一下!
Model1:标准回归,P值小于0.05,表明暴露与结局之间存在统计学关联。
Model2:两段式回归,拐点为4.044。当暴露_维生素D<4.044时,P值小于0.05;当暴露_维生素D≥4.044时,P值大于0.05;说明拐点以下,暴露_维生素D与结局死亡存在显著的正相关关系(效应值OR>1),而拐点以上,暴露_维生素D与结局死亡间不存在统计学关联。(注:effect其实就是我们普通回归中的效应值,线性为β、Logistic为OR、COX为HR)
P for likelihood test:似然比检验,P值大于0.05,表明Model1与Model2相比,没有显著改善。
这么多结果其实我们最关注的是拐点值与似然比检验P值。
这个P值决定了暴露与结局之间是否存在非线性关系,以及两段式回归是否更优于普通回归。
此外,平台也给出了简短的文字描述以及平滑曲线图,可以丰富结果内容。
3.相关文献参考
下面列举了一篇医学2区3.9分的参考文献,关于阈值效应分析部分的统计结果描述十分详细,大家写文章可以参考起来!
(Reference:Shi Y, Yu C. U shape association between triglyceride glucose index and congestive heart failure in patients with diabetes and prediabetes. Nutr Metab (Lond). 2024 Jul 2;21(1):42. doi: 10.1186/s12986-024-00819-7. PMID: 38956581; PMCID: PMC11221084.)
类似使用到阈值效应分析的文献还有很多,有了风暴统计平台,看似复杂的方法也变得简单操作了!
如果您也感兴趣,不妨点击下方链接,目前免费使用哦!
阈值效应分析模块链接:http://zstats.medsta.cn/yuzhi/
关于郑老师统计团队及公众号
全国较大的线上医学统计服务平台,专注于医学生、医护工作者学术研究统计支持,我们是你们统计助理!
我们提供以下科研与统计服务:
③医学数据库SEER、NHANES、GBD、孟德尔随机化等挖掘发表级数据
④预测模型、GBD、NHANES医学数据库挖掘1对1R语言指导
联系助教小董咨询(微信号aq566665)