Zstats风暴统计教程(10):Cox回归控制混杂偏倚

本篇是风暴统计平台教程系列的第十章,将详细介绍Cox回归控制混杂偏倚。

上篇我们介绍了风暴统计平台logistic回归的使用。此模块常用在影响因素研究中,即探讨多个X与Y的关联,对所有自变量"一视同仁"。

Zstats风暴统计教程(9):生存分析方法

除此之外,Cox回归也有焦点因素研究,即重点关注某一个X与Y的关联,将其他变量作为混杂因素纳入分析。为了避免X与Y关联程度收到其他因素干扰,就需要控制混杂。

关于混杂偏倚,有一篇详细的推文介绍,大家感兴趣可以了解一下。

混杂偏倚介绍

风暴统计控制混杂模块同样用到了回归分析,不过研究目的不同,结果的呈现方式有所不同。平台分为了单模型法、多模型法。下面我们进行详细的介绍。

图片

01

Cox回归调整协变量

即单模型法,首先选入我们的生存结局变量、生存时间、焦点暴露因素。

需要注意的是,因变量必须为二分类,最好以1代表阳性事件(发生结局),0代表对照组(未发生结局)。如果以其他数字赋值,也可以在绿色选框(见下方图示)中勾选对应的数字。

什么是焦点暴露因素?

比如研究吸烟与肺癌的关系,吸烟就是我们关注的焦点暴露因素,肺癌为结局,其他指标如性别、年龄、慢性病史等,可能对吸烟行为、肺癌发生产生影响的变量,即为混杂因素,也是协变量。

接着是协变量筛选设置。平台提供了2种筛选方式:根据单因素回归分析筛选自定义

①根据单因素回归分析筛选变量

也就是常说的先单后多,根据单因素回归各变量P值进行变量筛选。

首先,在下拉框选入开展单因素回归的变量,然后是多因素回归自变量筛选设置。决定了上一步选入的协变量,P值小于多少会进入多因素回归。

一般为0.05,当进入多因素回归的变量过少时,也可以放宽要求,0.1,0.2也是可以的。当选择"不限制"时,所有选入的协变量都会进入多因素模型

图片

③自定义

即研究者主动挑选协变量,直接开展多因素回归

前面的先单后多是1种常见的数据驱动型变量筛选方式。实际研究中,也会有理论驱动型,比如DAG(有向无环图)等。这时候,可以根据专业经验或理论依据,自定义选入变量。选入的变量将全部进入多因素模型。

图片

完成自变量筛选选择后,"点击分析"即可得到我们的回归分析三线表。

结果参数说明:

①β:回归系数,对应SPSS输出结果b值

②S.E:回归系数的抽样误差,即标准误

③Z:是各个回归系数进行假设检验的统计量,对应SPSS输出结果瓦尔德卡方值(wald=Z平方)

④P:小于0.05,说明自变量与因变量回归关系成立。

⑤HR(95%CI):代表回归系数及95%置信区间。

结果解读:

在焦点因素研究中,我们仅关注焦点暴露的回归结果。如本例中,在控制年龄、性别、种族、吸烟的影响后,焦点暴露维生素D对结局的影响不具有统计学差异(P=0.423)。

02

Cox回归多模型策略

即多模型法。第一步也是选入我们的因变量、生存时间、焦点暴露。

因变量同样需要是二分类,最好以1代表阳性事件(发生结局),0代表对照组(未发生结局)。如果以其他数字赋值,也可以在绿色选框(见下方图示)中勾选对应的数字。

接着点击"增加回归模型",模型1就是我们的单因素模型,因此我们直接开始选择模型2的协变量。

协变量选择自定义(推荐),逐个模型进行变量调整。

这里我们模型2先校正年龄、种族等常见的人口学变量,接着继续点击"增加回归模型"。

图片

如何确定每个模型调整什么协变量?

其实这个并没有严格的标准,通常情况下模型1就是焦点因素与结局的单因素模型,最后一个模型则是调整了全部的混杂因素,中间模型可以分不同类别的协变量逐步调整,比如人口学变量、慢性疾病变量、生化指标变量等。

前面模型调整的变量会自动顺延至后面的模型。模型3调整其他混杂因素后,如需继续增加模型,可继续点击”增加回归模型“,最多可增至模型5

图片

完成后"点击分析",右侧会给出三线表结果,与单模型法不同的是,结果仅提供了焦点暴露的结果,更加简洁明了。

结果解读:

多模型结果中,以最后一个模型的结果为准。如本例中,在控制年龄、性别、种族、吸烟、饮酒的影响后,焦点暴露维生素D对结局的影响不具有统计学差异(P=0.486)。

完成全部分析后,可以调整小数位数,默认情况下,P值保留3位小数,其他保留2位小数。

最后下载三线表格,支持excel版与word版!

图片

以上就是Cox回归控制混杂偏倚模块全部内容的介绍说明了。

下篇预告:Zstats风暴统计教程(11):倾向性得分匹配方法


郑重声明

Zstats-AI平台

√ 浙中医大统计老师郑卫军主持

√ 基于R语言软件开发

√ 免费使用,无需注册

√ 一键生成发表级图表

www.medsta.cn

(电脑端浏览器打开)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值