HFT-CNN-Learning Hierarchical Category Structure for Multi-label Short Text Categorization笔记

HFT-CNN模型通过构建层次结构解决短文本多标签分类问题,通过高层数据信息对低层分类进行微调的CNN实现。与传统平层模型相比,层次结构能更好地处理标签的层次性和数据稀疏性。实验表明,HFT-CNN在性能上优于WoFT和Flat模型,尤其当使用乘法得分函数(MSF)时效果更佳。然而,在某些情况下,由于顶层未进行参数迁移,分类效果可能受限。
摘要由CSDN通过智能技术生成
  1. 这篇文章是发布于2018年的用来实现短文本多标签的文章,这篇文章的主题思想是通过构建一个层次结构来实现高效的多标签分类任务;

    1. 文中提到在这篇文章之前的多标签分类使用的都是一种平层的模型,相比于对于标签是分等级的模型而言,平层的模型的效果较差;
    2. 同时,如果一个模型的标签的层次越少,这样最终的效果越差;如果标签的层次越低,分类的结果越是细粒度;
    3. 文中提出的HFT-CNN模型使用的是利用上层的标签下的数据,通过经过fine-tuning后的CNN实现更低层次的分类任务;
  2. 本文中的思想主要是:

    1. 目前主流的用来解决短文本分类的思想都是通过外部语料库信息富集的方式来实现补充短文本信息量不足的短板,但是这种方法也是存在缺陷的,缺陷就在于由于用来作为信息富集的外部语料库中的信息和模型的测试数据所处的领域是不同的,这就导致了模型学习得到的学习,和用来实际分类的数据存在领域壁垒问题;
    2. 解决上面问题的关键就在于需要扩大预定义或者是事先学习得到的这些领域分类定义的影响范围尽可能的扩大;
    3. 文中提到的是用来解决短文本分类的方法是通过学习不同分类之间的层次关系;对于我们捕捉到的类别层次关系肯定是低层次相比于高层次的类别的是更加细粒度的;同时高层次的类别包含的训练数据要比低层次的类别包含的数据要多;
    4. 模型提到的方法是使用高层次的数据信息来实现低层次的类别分类;而这个功能是通过经过Fine-tuning之后的CNN实现的;同时,异构信息也是通过这个CNN来实现的,将多个粒度的分类整合到一起,这样就成了更高层次的分类,从而实现分层次的类别;
    5. 文章贡献点:
      1. 扩大化了预定义类别的影响力;
      2. 同时,通过使用微调之后CNN类捕捉HS信息;
      3. 这种方法要比当时的CNN方法的性能要好;
    6. 文中使用CNN的目的是为了解决数据的稀疏性问题
  3. 基于CNN的层次微调模型

    1. CNN框架

      1. 如下图中所示image-20230330150618963

        这上面清晰的叙述了文中是如何使用CNN这个模型来实现特征的提取以及最终实现分类操作的;

      2. 首先,有几个对于相关符号的定义: x i ∈ R k x_i∈R^k xiRk 这个标志着对于一个句子中的第

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值