编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出:true
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
输出:false
思路1:暴力解
从上向下,直接遍历,看每一行最后一个元素,如果末尾元素小于target,说明这一行所有元素都小于target,看下一行,否则倒着遍历这一行元素,寻找到则为true,否则为false。
AC代码:(C++)
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
int m = matrix.size(), n = matrix[0].size();
for (int i = 0; i < m; i++) {
for (int j = n - 1; j >= 0; j--) {
if (matrix[i][j] < target) {
break;
} else {
if (target == matrix[i][j]) {
return true;
}
}
}
}
return false;
}
};
思路2:左下角的数一定比右上角的数大,从矩阵左下角开始遍历,如果比target大,则向上一行,如果比target小,则向右一列。
AC代码(C++)
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
int m = matrix.size(), n = matrix[0].size();
int i = m - 1, j = 0;
while (i >= 0 && j < n) {
if (matrix[i][j] == target) {
return true;
} else if (matrix[i][j] > target) {
i--;
} else {
j++;
}
}
return false;
}
};