[leetcode]74. 搜索二维矩阵

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:

每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。

在这里插入图片描述

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出:true

在这里插入图片描述

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
输出:false

思路1:暴力解
从上向下,直接遍历,看每一行最后一个元素,如果末尾元素小于target,说明这一行所有元素都小于target,看下一行,否则倒着遍历这一行元素,寻找到则为true,否则为false。

AC代码:(C++)

class Solution {
   public:
    bool searchMatrix(vector<vector<int>>& matrix, int target) {
        int m = matrix.size(), n = matrix[0].size();
        for (int i = 0; i < m; i++) {
            for (int j = n - 1; j >= 0; j--) {
                if (matrix[i][j] < target) {
                    break;
                } else {
                    if (target == matrix[i][j]) {
                        return true;
                    }
                }
            }
        }
        return false;
    }
};

思路2:左下角的数一定比右上角的数大,从矩阵左下角开始遍历,如果比target大,则向上一行,如果比target小,则向右一列。

AC代码(C++)

class Solution {
   public:
    bool searchMatrix(vector<vector<int>>& matrix, int target) {
        int m = matrix.size(), n = matrix[0].size();
        int i = m - 1, j = 0;
        while (i >= 0 && j < n) {
            if (matrix[i][j] == target) {
                return true;
            } else if (matrix[i][j] > target) {
                i--;
            } else {
                j++;
            }
        }
        return false;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值