1. 对称矩阵
定义
对称矩阵是指满足 A = A T A = A^T A=AT 的方阵,其中 A T A^T AT 表示 A A A 的转置矩阵。用元素表示,对于任意位置 ( i , j ) (i,j) (i,j),有 a i j = a j i a_{ij} = a_{ji} aij=aji。这意味着对称矩阵关于主对角线是对称的。
例如,下面是一个 3 × 3 3 \times 3 3×3 的对称矩阵: A = [ 1 2 3 2 4 5 3 5 6 ] A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix} A= 123245356
对称矩阵的性质
-
特征值都是实数:任何实对称矩阵的所有特征值都是实数。这是对称矩阵最重要的性质之一。
-
特征向量正交:不同特征值对应的特征向量是相互正交的。对于重复特征值,我们总能找到一组相互正交的特征向量。
-
可正交对角化:任何实对称矩阵都可以被正交矩阵对角化。即存在正交矩阵 P P P(满足 P T P = P P T = I P^TP = PP^T = I PTP=PPT=I),使得 P T A P = D P^TAP = D PTAP=D,其中 D D D 是对角矩阵,对角线元素是 A A A 的特征值。
-
谱分解:任何 n × n n \times n n×n 实对称矩阵都可以写成 A = ∑ i = 1 n λ i v i v i T A = \sum_{i=1}^n \lambda_i v_i v_i^T A=∑i=1nλiviviT,其中 λ i \lambda_i λi 是特征值, v i v_i vi 是对应的单位特征向量。
-
二次型:对称矩阵可以用来表示二次型 Q ( x ) = x T A x Q(x) = x^TAx Q(x)=xTAx,且每个二次型都可以用对称矩阵表示。
对称矩阵的应用
- 协方差矩阵:在统计学中,协方差矩阵是对称的,其对角化可以用于主成分分析(PCA)。
- 惯性张量:在物理学中,刚体的惯性张量是对称矩阵。
- 图论:无向图的邻接矩阵是对称的。
- 二次型:在优化问题中,目标函数的二阶导数(Hessian矩阵)是对称的。
- 量子力学:量子系统的哈密顿算符通常表示为对称矩阵。
对称正定矩阵
对称正定矩阵是一类特殊的对称矩阵,满足对任意非零向量 x x x, x T A x > 0 x^TAx > 0 xTAx>0。
对称正定矩阵的性质:
- 所有特征值都是正数
- 可以进行Cholesky分解: A = L L T A = LL^T A=LLT,其中 L L L是下三角矩阵
- 在最优化问题中,如果Hessian矩阵是正定的,则该点是局部最小值
对称矩阵的计算
对于对称矩阵,很多计算可以简化:
- 求特征值和特征向量时,可以使用专门的算法(如雅可比方法、QR算法)
- 存储时只需存储上(或下)三角部分
- 矩阵运算通常具有更好的数值稳定性
示例
考虑对称矩阵 A = [ 4 1 1 3 ] A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix} A=[4113]
求解特征值和特征向量:
- 特征多项式: det ( A − λ I ) = ( 4 − λ ) ( 3 − λ ) − 1 = λ 2 − 7 λ + 11 \det(A - \lambda I) = (4-\lambda)(3-\lambda) - 1 = \lambda^2 - 7\lambda + 11 det(A−λI)=(4−λ)(3−λ)−1=λ2−7λ+11
- 特征值: λ 1 = 7 + 5 2 ≈ 4.618 \lambda_1 = \frac{7+\sqrt{5}}{2} \approx 4.618 λ1=27+5≈4.618, λ 2 = 7 − 5 2 ≈ 2.382 \lambda_2 = \frac{7-\sqrt{5}}{2} \approx 2.382 λ2=27−5≈2.382
- 特征向量:对应于 λ 1 \lambda_1 λ1 的是 v 1 = ( 1 , λ 1 − 4 1 ) T v_1 = (1, \frac{\lambda_1-4}{1})^T v1=(1,1λ1−4)T,对应于 λ 2 \lambda_2 λ2 的是 v 2 = ( 1 , λ 2 − 4 1 ) T v_2 = (1, \frac{\lambda_2-4}{1})^T v2=(1,1λ2−4)T
- 正交化后得到单位正交特征向量
对称矩阵是线性代数中最重要的矩阵类型之一,其性质使它在许多应用领域中具有核心地位。