解密文本向量化:从BERT到嵌入模型的深度解析

1. 嵌入模型的定义

嵌入模型是一种机器学习模型,它能够将文本、图像或其他类型的数据转换成密集的数值向量(通常是浮点数数组)。在向量数据库领域,嵌入模型特别重要,因为它们能够捕获数据的语义信息,使得相似的内容在向量空间中彼此接近。

嵌入模型的主要特点:

  • 将高维、稀疏的数据(如文本)转换为低维、密集的向量表示
  • 保留了原始数据的语义信息和关系
  • 使得计算机可以高效地处理和比较数据之间的相似性

常见的嵌入模型包括Word2Vec、GloVe、BERT、OpenAI的text-embedding-ada系列、Cohere的嵌入模型等。

2. 文本转换为向量的过程

文本被嵌入模型转换为向量的过程通常包含以下步骤:

  1. 文本预处理
    • 分词:将文本拆分成单词或子词
    • 标准化:转换为小写、去除标点等
    • 特殊标记添加:如[CLS]、[SEP]等(在BERT等模型中)
  2. 令牌化(Tokenization)
    • 将单词/子词转换为数字ID
    • 使用预先定义的词汇表进行映射
  3. 模型编码
    • 将标记序列传入神经网络(可能是RNN、CNN或Transformer架构)
    • 网络处理输入,生成隐藏状态表示
  4. 向量提取
    • 从模型的特定层提取表示
    • 可能是取特定位置的向量(如[CLS]标记)
    • 或对所有token的向量进行平均/池化
  5. 维度调整(可选):
    • 可能会进行进一步的降维处理
    • 或规范化向量使其具有单位长度

例如,使用BERT模型时,一段文本"向量数据库很有用"可能会:

  • 先被标记为[“[CLS]”, “向”, “量”, “数”, “据”, “库”, “很”, “有”, “用”, “[SEP]”]
  • 转换为对应的token ID序列
  • 输入BERT模型获得每个token的隐藏状态
  • 提取[CLS]标记对应的向量(或所有token向量的平均值)
  • 得到最终的,比如768维的向量表示

这些向量随后可以被存储在向量数据库中,用于相似性搜索、聚类分析或其他下游任务。向量之间的相似度通常使用余弦相似度或欧几里得距离来计算。

3. BERT模型 文本转换为向量 过程

假设我们有以下简短的中文文本需要转换为向量:

"向量数据库很有用"

步骤1:文本预处理

  • 原始文本:"向量数据库很有用"
  • 添加特殊标记:"[CLS] 向量数据库很有用 [SEP]"

步骤2:分词(Tokenization)

BERT中文模型通常以字为单位进行分词:

  • 分词结果:["[CLS]", "向", "量", "数", "据", "库", "很", "有", "用", "[SEP]"]

步骤3:转换为Token ID

使用BERT词表将每个token映射为对应的ID:

  • Token ID序列:[101, 7467, 7028, 2802, 6963, 5255, 2523, 3300, 4495, 102]

其中:

  • 101 = [CLS]
  • 7467 = 向
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI Agent首席体验官

您的打赏是我继续创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值