1. 嵌入模型的定义
嵌入模型是一种机器学习模型,它能够将文本、图像或其他类型的数据转换成密集的数值向量(通常是浮点数数组)。在向量数据库领域,嵌入模型特别重要,因为它们能够捕获数据的语义信息,使得相似的内容在向量空间中彼此接近。
嵌入模型的主要特点:
- 将高维、稀疏的数据(如文本)转换为低维、密集的向量表示
- 保留了原始数据的语义信息和关系
- 使得计算机可以高效地处理和比较数据之间的相似性
常见的嵌入模型包括Word2Vec、GloVe、BERT、OpenAI的text-embedding-ada系列、Cohere的嵌入模型等。
2. 文本转换为向量的过程
文本被嵌入模型转换为向量的过程通常包含以下步骤:
- 文本预处理:
- 分词:将文本拆分成单词或子词
- 标准化:转换为小写、去除标点等
- 特殊标记添加:如[CLS]、[SEP]等(在BERT等模型中)
- 令牌化(Tokenization):
- 将单词/子词转换为数字ID
- 使用预先定义的词汇表进行映射
- 模型编码:
- 将标记序列传入神经网络(可能是RNN、CNN或Transformer架构)
- 网络处理输入,生成隐藏状态表示
- 向量提取:
- 从模型的特定层提取表示
- 可能是取特定位置的向量(如[CLS]标记)
- 或对所有token的向量进行平均/池化
- 维度调整(可选):
- 可能会进行进一步的降维处理
- 或规范化向量使其具有单位长度
例如,使用BERT模型时,一段文本"向量数据库很有用"可能会:
- 先被标记为[“[CLS]”, “向”, “量”, “数”, “据”, “库”, “很”, “有”, “用”, “[SEP]”]
- 转换为对应的token ID序列
- 输入BERT模型获得每个token的隐藏状态
- 提取[CLS]标记对应的向量(或所有token向量的平均值)
- 得到最终的,比如768维的向量表示
这些向量随后可以被存储在向量数据库中,用于相似性搜索、聚类分析或其他下游任务。向量之间的相似度通常使用余弦相似度或欧几里得距离来计算。
3. BERT模型 文本转换为向量 过程
假设我们有以下简短的中文文本需要转换为向量:
"向量数据库很有用"
步骤1:文本预处理
- 原始文本:
"向量数据库很有用"
- 添加特殊标记:
"[CLS] 向量数据库很有用 [SEP]"
步骤2:分词(Tokenization)
BERT中文模型通常以字为单位进行分词:
- 分词结果:
["[CLS]", "向", "量", "数", "据", "库", "很", "有", "用", "[SEP]"]
步骤3:转换为Token ID
使用BERT词表将每个token映射为对应的ID:
- Token ID序列:
[101, 7467, 7028, 2802, 6963, 5255, 2523, 3300, 4495, 102]
其中:
- 101 = [CLS]
- 7467 = 向