时空序列预测模型—PredRNN(Pytorch)

文章介绍了使用PyTorch实现的PredRNN模型,这是一种用于预测时空序列的深度学习结构,包括细胞单元、主干模型和Seq2seq编码解码部分。模型利用Conv2d和LSTM构建,适用于天气预测等场景。
摘要由CSDN通过智能技术生成

https://cloud.tencent.com/developer/article/1622038
(强对流天气临近预报)时空序列预测模型—PredRNN(Pytorch)

代码分为3文件:

PredRNN_Cell.py #细胞单元

PredRNN_Model.py #细胞单元堆叠而成的主干模型

PredRNN_Main_Seq2seq_test.py #用于外推的Seq2seq 编码解码

# PredRNN_Cell
import torch.nn as nn
from torch.autograd import Variable
import torch
####################################
#
# 单层,单时间步的PredRNNCell(细胞/单元),用于构造整个外推模型
# The cell/unit of predrnncell of every layer and time_step, for constructing the entire extrapolation model.
#
####################################
class PredRNNCell(nn.Module):
    def __init__(self, input_size, input_dim, hidden_dim_m, hidden_dim,kernel_size, bias):
        super(PredRNNCell, self).__init__()
        self.height, self.width = input_size
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.hidden_dim_m = hidden_dim_m   #  hidden of M
        self.kernel_size = kernel_size
        self.padding = kernel_size[0] // 2, kernel_size[1] // 2
        self.bias = bias
        #####################################################################################
        # 相应符号可对应参照论文
        # Corresponding symbols can correspond to reference paper
        # conv_h_c for gt, it, ft
        # conv_m for gt', it', ft'
        # conv_o for ot
        # self.conv_h_next for Ht
        self.conv_h_c = nn.Conv2d(in_channels=self.input_dim + self.hidden_dim,
                              out_channels=3 * self.hidden_dim,
                              kernel_size=self.kernel_size,
                              padding=self.padding,
                              bias=self.bias)
        self.conv_m = nn.Conv2d(in_channels=self.input_dim + self.hidden_dim_m,
                              out_channels=3 * self.hidden_dim_m,
                              kernel_size=self.kernel_size,
                              padding=self.padding,
                              bias=self.bias)
        self.conv_o = nn.Conv2d(in_channels=self.input_dim + self.hidden_dim * 2 + self.hidden_dim_m,
                              out_channels=self.hidden_dim,
                              kernel_size=self.kernel_size,
                              padding=self.padding,
                              bias=self.bias)
        self.conv_h_next = nn.Conv2d(in_channels=self.hidden_dim + self.hidden_dim_m,
                                out_channels=self.hidden_dim,
                                kernel_size=1,
                                bias=self.bias)
    def forward(self, input_tensor, cur_state, cur_state_m):
        h_cur, c_cur= cur_state  #cur = Current input of H and C
        h_cur_m = cur_state_m #cur = Current input of m

        combined_h_c = torch.cat([input_tensor,h_cur], dim=1)
        combined_h_c = self.conv_h_c(combined_h_c)
        cc_i, cc_f, cc_g = torch.split(combined_h_c, self.hidden_dim, dim=1)

        combined_m = torch.cat([input_tensor,  h_cur_m], dim=1)
        combined_m = self.conv_m(combined_m)
        cc_i_m, cc_f_m, cc_g_m = torch.split(combined_m, self.hidden_dim_m, dim=1)

        i = torch.sigmoid(cc_i)
        f = torch.sigmoid(cc_f)
        g = torch.tanh(cc_g)
        c_next = f * c_cur + i * g

        i_m = torch.sigmoid(cc_i_m)
        f_m = torch.sigmoid(cc_f_m)
        g_m = torch.tanh(cc_g_m)
        h_next_m = f_m * h_cur_m + i_m * g_m

        combined_o = torch.cat([input_tensor, h_cur, c_next, h_next_m], dim=1)
        combined_o = self.conv_o(combined_o)
        o = torch.sigmoid(combined_o)

        h_next = torch.cat([c_next, h_next_m], dim=1)
        h_next = self.conv_h_next(h_next)
        h_next = o * torch.tanh(h_next)

        return h_next, c_next, h_next_m
    #####################################
    #
    # 用于在t=0时刻时初始化H,C,M
    # For initializing H,C,M at t=0
    #
    #####################################
    def init_hidden(self, batch_size):
        return (Variable(torch.zeros(batch_size, self.hidden_dim, self.height, self.width)).cuda(),
                Variable(torch.zeros(batch_size, self.hidden_dim, self.height, self.width)).cuda())
#PredRNN_Model
import torch.nn as nn
import torch
import numpy as np
from torch.autograd import Variable
from PredRNN_Cell import PredRNNCell
##############################################
#
# 构造PredRNN
# Construct PredRNN
#
##############################################
class PredRNN(nn.Module):
    def __init__(self, input_size, input_dim, hidden_dim, hidden_dim_m, kernel_size, num_layers,
                 batch_first=False, bias=True):
        super(PredRNN, self).__init__()
        self._check_kernel_size_consistency(kernel_size)
        kernel_size = self._extend_for_multilayer(kernel_size, num_layers) # 按照层数来扩充 卷积核尺度/可自定义
        hidden_dim = self._extend_for_multilayer(hidden_dim, num_layers) # 按照层数来扩充 LSTM单元隐藏层维度/可自定义
        hidden_dim_m = self._extend_for_multilayer(hidden_dim_m, num_layers)  # M的单元应保持每层输入和输出的一致性.
        if not len(kernel_size) == len(hidden_dim) == num_layers:  # 判断相应参数的长度是否与层数相同
            raise ValueError('Inconsistent list length.')
        self.height, self.width = input_size
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.hidden_dim_m = hidden_dim_m
        self.kernel_size = kernel_size
        self.num_layers = num_layers
        self.batch_first = batch_first
        self.bias = bias
        cell_list = []
        for i in range(0, self.num_layers):
            if i == 0:    # 0 时刻, 图片的输入即目前实际输入
                cur_input_dim = self.input_dim
            else:
                cur_input_dim = self.hidden_dim[i - 1]  # 非0时刻,输入的维度为上一层的输出
                #Cell_list.appenda为堆叠层操作
            cell_list.append(PredRNNCell(input_size=(self.height, self.width),
                                          input_dim=cur_input_dim,
                                          hidden_dim=self.hidden_dim[i],
                                          hidden_dim_m=self.hidden_dim_m[i],
                                          kernel_size=self.kernel_size[i],
                                          bias=self.bias).cuda())
        self.cell_list = nn.ModuleList(cell_list)#Cell_list进行Model化
    def forward(self, input_tensor, hidden_state=False, hidden_state_m=False):
        if self.batch_first is False:
            input_tensor = input_tensor.permute(1, 0, 2, 3, 4)
        if hidden_state is not False:
            hidden_state = hidden_state
        else:   #如果没有输入自定义的权重,就以0元素来初始化
            hidden_state = self._init_hidden(batch_size=input_tensor.size(0))

        if hidden_state_m is False:
            h_m = Variable(torch.zeros(input_tensor.shape[0], self.hidden_dim_m[0],
                                       input_tensor.shape[3], input_tensor.shape[4])
                           ,requires_grad=True).cuda()
        else:
            h_m = hidden_state_m

        layer_output_list = []  #记录输出
        layer_output_list_m = []  # 记录每一层m
        layer_output_list_c = []  # 记录每一层c
        last_state_list = []  #记录最后一个状态
        layer_output_list_m = []  # 记录最后一个m
        last_state_list_m = []  # 记录最后一个m
        seq_len = input_tensor.size(1)   #第二个时间序列,3
        cur_layer_input_1 = input_tensor #x方向上的输入
        all_layer_out = []
        for t in range(seq_len):
            concat=[]
            output_inner_c = []  # 记录输出的c
            output_inner = []  #记录输出的c
            output_inner_m = []  # 记录输出的m
            output_inner_h_c=[] # 记录输出的h 和c
            h0 = cur_layer_input_1[:, t, :, :, :]  #确定layer = 1 时的输入,如雷达回波图等矩阵信息
            for layer_idx in range(self.num_layers): # 由于M在layer上传递,所以优先考虑layer上的传递
                if t == 0:  # 由于M在layer上传递,所以要区分t=0(此时m初始化)
                    h, c = hidden_state[layer_idx]  # h和c来自于初始化/自定义
                    h, c, h_m = self.cell_list[layer_idx](input_tensor=h0,
                                                          cur_state=[h, c], cur_state_m=h_m)#经过一个cell/units输出的h,c,m
                    output_inner_c.append(c) #记录输出的c进行
                    output_inner.append(h)
                    output_inner_m.append(h_m)
                    output_inner_h_c.append([h,c])
                    h0=h
                else:
                    h = cur_layer_input[layer_idx]
                    c = cur_layer_input_c[layer_idx]
                    h, c, h_m = self.cell_list[layer_idx](input_tensor=h0,
                                                          cur_state=[h, c], cur_state_m=h_m)
                    output_inner_c.append(c)
                    output_inner.append(h)
                    output_inner_m.append(h_m)
                    output_inner_h_c.append([h, c])
                    h0 = h
            cur_layer_input = output_inner#记录某个t,全部layer的输出h
            cur_layer_input_c = output_inner_c#记录某个t,全部layer的输出c
            cur_layer_input_m = output_inner_m#记录某个t,全部layer的输出m
            alllayer_output = torch.cat(output_inner, dim=1) #把某个t时刻每个隐藏层的输出进行堆叠,以便于在解码层参照Convlstm使用1x1卷积得到输出
            all_layer_out.append(alllayer_output)#记录每个t时刻,所有隐藏层输出的h,以便于在解码层参照Convlstm使用1x1卷积得到输出
            per_time_all_layer_stack_out=torch.stack(all_layer_out, dim=1)#记录每个t时刻,所有隐藏层输出的h,以便于在解码层参照Convlstm使用1x1卷积得到输出
            layer_output_list.append(h)# 记录每一个t得到的最后layer的输出h
            last_state_list.append([h, c])#记录每一个t得到的最后layer的输出h,C
            last_state_list_m.append(h_m)#记录每一个t得到的最后layer的输出m
            #按层对最后一层的H和C进行扩展
            # ↓↓↓↓↓↓↓↓↓全部t时刻最后layer的输出h
            # ↓↓↓↓↓↓↓↓↓最后t时刻全部layer的输出h和c
            # ↓↓↓↓↓↓↓↓↓全部t时刻最后layer的输出m/t+1时刻0 layer的输入m
            # ↓↓↓↓↓↓↓↓↓全部时刻全部layer的h在隐藏层维度上的总和,hidden_dim = [7,1],则输出channels = 8
            return torch.stack(layer_output_list, dim=1),\
               output_inner_h_c,\
               torch.stack(last_state_list_m, dim=0),\
               per_time_all_layer_stack_out

    def _init_hidden(self, batch_size):
        init_states = []
        for i in range(self.num_layers):
            init_states.append(self.cell_list[i].init_hidden(batch_size))
        return init_states
    @staticmethod

    def _check_kernel_size_consistency(kernel_size):
        if not (isinstance(kernel_size, tuple) or
                (isinstance(kernel_size, list) and all([isinstance(elem, tuple) for elem in kernel_size]))):
            raise ValueError('`kernel_size` must be tuple or list of tuples')
    @staticmethod

    def _extend_for_multilayer(param, num_layers):
        if not isinstance(param, list):
            param = [param] * num_layers
        return param
#PredRNN_Seq2Seq
from PredRNN_Model import PredRNN
import torch.optim as optim
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
from torch.autograd import Variable
import torch
from PIL import Image
from torch.utils.data import Dataset, DataLoader
import os
import time

input=torch.rand(1,1,1,100,100).cuda()   # Batch_size , time_step, channels, hight/width, width/hight
target=torch.rand(1,1,1,100,100).cuda()   # Batch_size , time_step, channels, hight/width, width/hight

class PredRNN_enc(nn.Module):
    def __init__(self):
        super(PredRNN_enc, self).__init__()
        self.pred1_enc=PredRNN(input_size=(100,100),
                input_dim=1,
                hidden_dim=[7, 1],
                hidden_dim_m=[7, 7],
                kernel_size=(7, 7),
                num_layers=2,
                batch_first=True,
                bias=True).cuda()
    def forward(self,enc_input):
        _, layer_h_c, all_time_h_m, _ = self.pred1_enc(enc_input)
        return layer_h_c, all_time_h_m
class PredRNN_dec(nn.Module):
    def __init__(self):
        super(PredRNN_dec, self).__init__()
        self.pred1_dec=PredRNN(input_size=(100,100),
                input_dim=1,
                hidden_dim=[7, 1],
                hidden_dim_m=[7, 7],
                kernel_size=(7, 7),
                num_layers=2,
                batch_first=True,
                bias=True).cuda()
        self.relu = nn.ReLU()
    def forward(self,dec_input,enc_hidden,enc_h_m):
        out, layer_h_c, last_h_m, _ = self.pred1_dec(dec_input,enc_hidden,enc_h_m)
        out = self.relu(out)
        return out, layer_h_c, last_h_m
enc=PredRNN_enc().cuda()
dec=PredRNN_dec().cuda()

import itertools
loss_fn=nn.MSELoss()
position=0
optimizer=optim.Adam(itertools.chain(enc.parameters(), dec.parameters()),lr=0.001)
for epoch in range(1000):
    loss_total=0
    enc_hidden, enc_h_m = enc(input)
    for i in range(input.shape[1]):
        optimizer.zero_grad()
        out, layer_h_c, last_h_m = dec(input[:,i:i+1,:,:,:], enc_hidden, enc_h_m[-1])
        loss=loss_fn(out, target[:,i:i+1,:,:,:])
        loss_total+=loss
        enc_hidden = layer_h_c
        enc_h_m = last_h_m
    loss_total=loss_total/input.shape[1]
    loss_total.backward()
    optimizer.step()
    print(epoch,epoch,loss_total)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dataloading...

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值