时空序列预测模型总结ConvLSTM

一、ConvLSTM

1.1结构

在这里插入图片描述
在这里插入图片描述

1.2公式在这里插入图片描述

1.3特点

1、ConvLSTM和FC-LSTM的区别主要在于输入到状态, 状态到状态的普通相乘(公式中的圆圈)改为卷积运算(公式中的*)。下图为LSTM结构和公式LSTM结构(引用自动手深度学习)
2、常用的端到端模型seq2seq采用了encoding-decoding(编码器解码器)结构,论文作者采用 encoding-forcasting结构。
3、ConvLSTM输入为3Dtensor。FC-LSTM其实可以看作是ConvLSTM的输入和输出state以及状态H都为3D而最后两维为1,也可以看作是输入的全部特征全部归结于一个单元(cell)上。在这里插入图片描述
4、state-to-state上的kernel大小要大于1对于提取时空的特征是必要的。

1.4优点

1、相比于普通的LSTM,能够更好的捕捉空间信息。
2、提出了encoding-forcasting,类似于编码器解码器的结构。
3、可用于降水预测等时空序列预测问题。

1.5开源代码

链接: ConvLSTM_pytorch

二、XXXX

2.1结构

2.2公式

2.3特点

2.4优点

2.5开源代码

本文随着笔者学习进度而逐渐更新。欢迎大家一起学习与讨论。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值