远程服务器上安装Anaconda并创建python环境、安装pytorch(Linux)

实验室共用服务器,所以需要在自己的文件夹下创建自己的环境。使用远程连接工具:mobaxterm。

第一步:官网下载Anaconda。
官网:https://www.anaconda.com/distribution/
选择Linux对应版本:
在这里插入图片描述
得到sh文件:Anaconda3-2020.11-Linux-x86_64.sh

第二步:从本地把.sh文件传输到远程服务器上。
(事实上,直接在Windows系统下把文件拖到Linux系统的文件夹里就可以了,后来才发现可以这么做=_=…如果可以拖过来,这一步就不用看了…)
我是在本地下载的,要想安装到远程服务器的Linux系统上,需要先把.sh文件传输到远程服务器上。

操作步骤:
打开cmd,把目录切换到.sh所在文件夹下,指令是:

cd sh文件所在的文件夹

然后输入指令:

scp Anaconda3-2020.11-Linux-x86_64.sh remote_username@remote_ip:remote_folder

解释下参数:
remote_username:远程服务器的名字(还需要知道password)
remote_ip:远程服务器的ip地址
remote_folder:你想把sh文件放到远程服务器的哪个文件夹下
Plus:更多scp命令
然后会让你输入password,输入密码即可进行传输,100%即传输完成。

在远程服务器终端你的文件夹下输入ls,查看,就能看到.sh文件已经传输过来了。
在这里插入图片描述
第三步:开始安装Anaconda
在Linux里面.sh文件是可执行的脚本文件,需要用命令bash来进行安装。
此时我们输入命令:

bash Anaconda3-2018.12-Linux-x86_64.sh

然后就开始安装了,先是很长的一些协议文字,不断按回车即可,然后一路yes,直到安装完成。

第四步:配置环境变量
网上都说修改profile文件,但是这是所有用户的环境,我这里是共用服务器,所以不能修改profile,而是只修改我的环境变量,还是在当前文件夹下,有一个bashrc文件,修改它,输入指令:

vim ~/.bashrc

进入该文件,然后按i,进入编辑模式,在最下边可以看到INSERT
在这里插入图片描述
然后按↓键,一直到最下边,加入一行指令:

export PATH=$PATH:/home/username/anaconda3/bin

其中,username是你的文件夹名字。
在这里插入图片描述
然后按Esc键,再按,再输入wq,即保存退出,

最后再重新载入配置文件,输入指令:

source ~/.bashrc

至此,环境变量就配置好了。

第五步:测试安装是否成功
输入指令:

conda info --envs

显示如下,即表示成功:
在这里插入图片描述
第六步:创建python虚拟环境
因为不同的工程会需要不同的环境,创建不同的虚拟环境便于管理项目。
cd到刚刚安装到的Anaconda3文件夹里,然后创建一个python3.7的环境,其中py37是该虚拟环境的名字,输入指令:

conda create -n py37 python=3.7

如果下载速度过慢导致报错,可切换至清华源:

#添加数据源:例如, 添加清华anaconda镜像:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

然后再使用conda create …创建虚拟环境,耐心等待,然后询问确认/取消,输入y确认创建。

第七步:进入虚拟环境。
使用指令:

source activate py37 

进入到刚才安装的虚拟环境,在这里用conda命令安装需要的包和库,不会干扰到其他环境。
例如,安装numpy,指令为:

conda install numpy

其他常用操作指令:

conda update -n base conda #update最新版本的conda
conda activate xxxx #开启xxxx环境
conda deactivate  #关闭环境
conda remove -n xxxx --all  #删除xxxx环境
conda env list #显示所有的虚拟环境
conda info --envs #显示所有的虚拟环境

conda list         #查看已经安装的文件包
conda list -n xxxx       #指定查看xxxx虚拟环境下安装的package
conda update xxxx   #更新xxxx文件包
conda uninstall xxxx   #卸载xxxx文件包

第八步:安装pytorch。
pytorch官网的命令不说了,由于下载太慢,使用清华源安装。
首先配置清华源,输入以下各命令:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

# 设置搜索时显示通道地址
conda config --set show_channel_urls yes

使用清华源安装指令:

conda install pytorch torchvision cudatoolkit=10.1

该指令与官方相比,少了最后的-c pytorch.
很快就安装好了。

参考了:
1、Linux下安装Anaconda3详细教程
2、Linux服务器安装Anaconda3环境
3、linux创建虚拟环境(python虚拟环境)

### 安装 Anaconda 创建 Conda 虚拟环境远程服务器上安装 Anaconda创建 Conda 虚拟环境的过程可以通过以下方法实现: #### 下载安装 Anaconda 首先,在远程服务器上下载最新版本的 Anaconda。可以使用 `wget` 命令来完成此操作。 ```bash wget https://repo.anaconda.com/archive/Anaconda3-2023.07-1-Linux-x86_64.sh ``` 接着赋予脚本可执行权限,运行该脚本来启动安装过程。 ```bash chmod +x Anaconda3-2023.07-1-Linux-x86_64.sh ./Anaconda3-2023.07-1-Linux-x86_64.sh ``` 按照提示完成安装,通常需要接受许可协议、选择安装路径等设置[^1]。 #### 初始化 Conda 安装完成后,初始化 Conda 以便能够在终端中直接调用它。 ```bash source ~/.bashrc ``` 这一步确保每次打开新的终端窗口时都会加载 Conda 的环境变量[^2]。 #### 创建一个新的 Conda 环境 通过指定 Python 版本来创建一个新的 Conda 环境。 ```bash conda create --name myenv python=3.9 ``` 上述命令将创建名为 `myenv` 的新环境将其默认使用的 Python 设置为 3.9 版本。 #### 激活和停用 Conda 环境 激活刚刚创建的 Conda 环境。 ```bash conda activate myenv ``` 当不再需要当前环境时,可通过以下命令退出: ```bash conda deactivate ``` #### 使用国内镜像源加速包管理 为了提高软件包安装的速度,建议配置国内镜像源作为默认仓库地址。例如,清华大学开源软件镜像是一个常用的选择。 编辑 `.condarc` 文件或者直接运行如下命令以更改默认通道至清华 TUNA 镜像站: ```yaml channels: - defaults show_channel_urls: true default_channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free custom_channels: conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud ``` 也可以替换阿里云 PIP 源用于更快地安装 Python 库[^3]。 ```bash pip install -e '.[deepspeed]' -i https://mirrors.aliyun.com/pypi/simple/ ``` --- ### 示例代码片段展示 NumPy 向量生成逻辑 以下是基于给定数据维度构建随机向量的一个例子[^5]。 ```python import numpy as np dimension = 64 # 数据维度 database_size = 100000 # 数据库大小 query_number = 10000 # 查询数量 np.random.seed(1234) # 设定种子保证结果重现性 # 构建数据库中的向量集合 data_vectors = np.random.random((database_size, dimension)).astype('float32') data_vectors[:, 0] += np.arange(database_size) / 1000. # 构建查询集中的向量集合 query_vectors = np.random.random((query_number, dimension)).astype('float32') query_vectors[:, 0] += np.arange(query_number) / 1000. ``` 以上代码展示了如何利用 NumPy 来模拟高维空间内的随机点分布情况。 ---
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值