树的重心

重心的定义:
一颗无根树,选择某一个结点,该结点相对于其它未被选择的结点来说,拥有的最大子树的节点数是最少的。

性质:
1.以树的重心为根时,所有子树的大小都不超过整棵树大小的一半。
2.树中所有点到某个点的距离和中,到重心的距离和是最小的;如果有两个重心,那么到它们的距离和一样。
3.把两棵树通过一条边相连得到一棵新的树,那么新的树的重心在连接原来两棵树的重心的路径上。
4.在一棵树上添加或删除一个叶子,那么它的重心最多只移动一条边的距离。

在这里插入代码片
#include <bits/stdc++.h>

#define ll long long


using namespace std;
//存储图 链式前向星法
int head[10000];
int to[10000];
int next[10000];

int cnt=0;
int siz[10000];//子节点个数    (儿子个数)

//   2(1)
//    |
//   5(2)
//    / \
// 6(3)  7(4)  
//  siz[2]=2

int vis[10000];
int n;
int ans=10000; //以重心为根节点的最大子树的子节点个数
int temp;//重心点

void add(int u,int v)
{
    next[++cnt]=head[u]; //记录前一条边
    head[u]=cnt;   //记录当前第几条边
    to[cnt]=v;
}
void dfs(int x)
{
    vis[x]=1;
    siz[x]=1;//本身自己一个结点
    for (int i=head[x];~i;i=next[i])
    {
        int v=to[i];
        if(!vis[v])
        {
            dfs(v);
            siz[x]+=siz[v];  //加上每一个孩子的子节点数   
            ret=max(ret,siz[v]);  //找出最大的子节点个数
        }
    }
    ret=max(ret,n-siz[x]);  //总共n个结点-以x为根的下方的结点数得到上方的结点总数
    //ret最终为以x为根节点的最大子树的子节点个数
    if(ret<ans||(ret<=ans&&x<temp))
    {
        ans=ret;
        temp=x;   
    }
}
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        memset(vis,0,sizeof(Vis));
         memset(siz,0,sizeof(siz));
        cin>>n;
        for (int i=0;i<n-1;i++)
        {
            int a,b;
            cin>>a>>b;
            add(a,b);
        }
        dfs(1);
        cout<<"重心为: "<<temp<<" shu以重心为根节点的最大子树的子节点个数: "<<ans<<endl;
    }
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值