基于深度学习的肿瘤分割与分类论文笔记(一)

历经三年快节奏的工作生活,现在又回到了科研的队伍,重新拾起科研对我来说是个不小的挑战。为了起个好头,我决定从博客记录论文开始接下来的科研工作。

最近看了一篇对肿瘤图像进行特征提取,从而达到良好的分割分类效果的论文《Active Deep neural Network Features Selection for Segmentation and Recognition of Brain Tumors using MRI Images》。这篇论文主要从特征提取出发,将深度学习模型提取的特征与传统的图像特征(LBP,SFTA等)相结合从而达到较好的特征表达。深度网络提取的为深度特征,传统的图像特征为浅层特征。主要的处理过程如下:
在这里插入图片描述
原始图片进行对比度增强,然后进行分割和分类:
分割:SbDL显著性映射(阈值划分为2值):SFTA与LBP作为低级特征(相似特征舍弃),AlexNet提取高级特征(倒数第二层替换为SGD),两个做欧式平方(K-means,k=2);
分类/识别:Inception V3用来做特征提取,结合BRLBP特征纹理信息(还有两者结合的特征,最优特征),然后通过PSO优化,最后用softmax做分类。

数据集和实验如下:
数据库:BRATS 2013:30个病人(20个高级神经胶质瘤,10个低级神经胶质瘤)
BRATS 2015: 54 LGG and 220 HGG
BRATS 2017 and 2018:285个病例(75 LGG and 210 HGG)
在这里插入图片描述
评估标准:error rate, accuracy and overall execution time

分割:2017随机选100,2018随机选200 针对增强肿瘤,核心肿瘤,整个肿瘤等计算相似度跟错误率(相似度+错误率=1)

分类:4个数据库分别使用四个分类器分别对四个特征(Inception V3, BRLBP纹理特征,两者结合,最优特征)进行实验,最优特征不止提高了准确率,而且相比融合特征(时间消耗几乎是单个特征的两倍)节省时间;最后对比了三个现有方法的准确率。

总的来说,个人觉得本文创新点不大,主要集中于深度网络特征与传统特征结合的特征提取方法。其中对MRI图像的对比度增强,使用PSO进行优化等可以参考。

附一些概念和公式整理:

  1. 什么是MRI图像?
    概念:MRI是磁共振成像(Megnetic Resonace Imaging),依据释放的能量(也可称信号)在物质内部不同结结构环境中有不同的衰减,通过外加的磁场检测所发射出的电磁波,可以得知构成该物体原子核的位置和种类,从而绘制物体内部的结构图像。
    序列:通过改变MR信号的影响因素,可以得到不同的影像,这些不同的影像就称之为序列。如根据T1值加权,可得T1序列,根据T2值加权可得T2序列。一个病例可以有多个序列,每个序列由许多切片组成。
    为什么要有多种不同的序列:因为肿瘤部位在不同的序列下的表现不同,只根据一种序列不能准确判断肿瘤的位置、大小等信息。T1序列主要用于观察解剖结构,T2序列用于确定病变部位信息,flair序列用于观察病变部位周遭情况,t1ce序列用于观察肿瘤内部情况,鉴别肿瘤与非肿瘤性病变.

2.LBP (Local Binary Pattern,局部二值模式): 以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,3*3邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共256种),即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息
在这里插入图片描述
3.PSO(Paticle Swarm Optimization):
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值