二、DMSP/OLS、NPP/VIIRS等夜间灯光数据能源碳排放空间化——灯光指数计算(一)

本文介绍了如何使用DMSP/OLS和NPP/VIIRS等夜间灯光数据来空间化能源碳排放,强调在计算夜间灯光指数前需提取建成区范围。通过建成区的夜间灯光数据与能源碳排放数据拟合,得到反演方程。文章详细阐述了建成区范围的提取方法,包括基于夜间灯光与高程数据的邻域分析技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

图1 某地区能源碳排放空间化分布图

其实能源碳排放数据直接找【中国能源统计年鉴】就可以,这里与GDP空间化有一点不同的就是,就是在计算夜间灯光指数之前,需要将研究区域所属年份建成区范围提取出来,也就是属于城市建成区的夜间灯光范围,那么这里为什么有这样一个区分,主要是因为GDP的空间化会认为所有的土地均存在GDP产出,当然这并不能体现的GDP统计数据中,所以也有一部分GDP空间化的做法是将夜间灯光为0的区域进行相关处理,从而在一定的程度上平衡部分误差。但是实际上大多数GDP空间化都是默认所有土地都能产出GDP并且会对GDP统计数据进行一定的处理。

对于能源碳排放空间化有点要重点解释,就是通常也是能源碳排放活动区域应该人类活动区域才存在能源碳排放,所以说与GDP空间化比较大的差异就是说通常做法利用夜间灯光数据提取出建成区范围,然后基于该建成区内的夜间灯光数据计算夜间灯光指数,然后再与能源碳排放数据进行拟合,得到拟合方程,随后用于反演。

二、具体步骤

1、建成区范围提取

基于夜间灯光数据建成区提取的方法比较多,具体可以查阅专栏&#x

### 利用夜间灯光数据计算景观格局指数 #### 数据准备 为了利用夜间灯光数据计算景观格局指数,首先需要准备好高质量的数据源。常用的夜间灯光数据包括 DMSP/OLSNPP-VIIRS 和珞珈号等遥感影像数据[^1]。这些数据能够反映人类活动的空间分布特征,因此非常适合用于分析城市建成区的扩展以及景观格局的变化。 #### 方法概述 景观格局指数组描述空间异质性和模式变化的定量指标,通常通过 GIS 软件实现自动化计算。以下是具体的技术流程: 1. **预处理阶段** 夜间灯光数据往往存在噪声干扰(如背景辐射和云层遮挡),需对其进行校正和平滑处理。可以采用 ArcGIS 或 ENVI 中的地学统计模块完成去噪操作。此外,还需要对原始栅格图像进行重采样以匹配目标分辨率[^2]。 2. **阈值分割** 使用合适的算法确定最佳分割阈值,将连续灰度级转换成值化图层,区分有无显著人为活动区域。常用方法包括 Otsu 自动阈值法或者基于直方图的经验设定[^3]。 3. **斑块矢量化** 将经过阈值化的值地图转为矢量格式,便于后续拓扑关系建立及属性表管理。此过程可通过 QGIS 的 “Polygonize” 工具快速实施。 4. **计算景观指数** 借助 FRAGSTATS 等专用软件包导入前述生成的矢量文件,选取感兴趣的多项景观水平或类别水平上的指标项展开批量运算。典型例子涵盖斑块数量 (#Patches)、最大斑块面积占比 (LPI) 及边缘密度 (ED)[^4]。 #### 实现工具推荐 - **ArcMap/ArcGIS Pro**: 提供全面的地图编辑功能与强大的插件支持。 - **QGIS**: 开源替代方案,适合预算有限的研究者尝试新思路。 - **RStudio & Python Libraries**: 如 `raster`, `spatial` 库可用于脚本定制开发;对于大数据集尤其适用。 ```python import rasterio from skimage import filters # 加载夜间灯光数据 with rasterio.open('night_light_data.tif') as src: array = src.read(1) # 计算Otsu阈值 threshold_value = filters.threshold_otsu(array) binary_image = array > threshold_value print(f'Otsu Threshold Value: {threshold_value}') ``` 以上代码片段展示了如何运用 Python 结合 scikit-image 库执行自动阈值得到值化结果。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

端木宛白的GIS课堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值