【第十九课】区域经济空间格局分析——密度分析

一、前言

空间格局分析就是认识与地理位置相关的数据间的空间依赖、空间关联等关系,通过空间位置建立数据间的统计关系,对空间分布的显著特征进行汇总, 例如确定经济重心或总体方向趋势、识别具有统计显著性的空间聚类(热点/ 冷点)或空间异常值、评估聚类或离散的总体模式、根据属性相似性对要素进行分组、确定合适的分析尺度以及探究空间关系。

地理信息系统中的密度分析不同于统计学上的密度分析。密度分析是通 过离散点数据或者线数据进行内插的过程,根据插值原理不同,主要是分为核 密度分析和普通的点/线密度分析。通过密度分析,可以将测量得到的总点或 者线生成连续表面,从而可以找出那些地方点或者线比较集中,计算整个区域的数据聚集状况,特别适用于探析人口、基础设施、POI兴趣点、村落、景点等分布集聚情况。核密度分心中,落入搜索区的点具有不同的权重,靠近搜索中心 的点或线会被赋予较大的权重,反之,权重较小,它的计算结果分布较平滑。在 普通的点/线密度分析中,落在搜索区域内的点或线有相同的权重,先对其求和,再除以搜索区域的大小,从而得到每个点的密度值。考虑到方法的有效性与广泛性,本书着重介绍核密度分析及其操作。

核密度估计法 (Kernel Denstiy Estimation)是一种非参数估计方法,即借助一个移动的单元格 (窗口),对给定区域的点或线格局的密度进行估计。核 密度估计方法不利用有关数据分布的先验知识,对数据分布不附加任何假定, 是一种从数据样本本身出发研究数据分布特征的方法。首先,定义一个固定 的搜索窗宽,利用滑动的圆形区域统计出在该区域内淘宝村数量,根据密度精度要求,确定输出栅格单元的大小;其次,通过选择的核函数计算出窗宽内淘宝村个数对圆形区域内单元格的密度贡献值;最后,根据窗宽内淘宝村个数 对栅格密度的贡献值累加,为每个栅格密度值赋值,并输出栅格的密度值。

假定 X1、X2、..........Xn 服从同分布,其密度函数 f(x)未知,需要通过已有数据去估计密度函数 f(x),经验分布函数为:

二、案例分析

一、现有数据:

广州市2022年小区POI矢量数据和广州市矢量行政边界,通过核密度分析广州市小区整体空间聚集情况,具体操作如下:

(1)加载数据(POI和矢量行政边界)

(2) 打开【ArcToolbox】→【Sptial Analyst 工具】→【密度分析】→【核密度分析】。

(3)弹出对话框,按照下图进行参数设置,输入要素类——POI,Population 字段表示各要素的 Population值的字段,即遍布于用来创 建连续表面的景观内的计数或数量,如果不使用任何项目或特殊值,则选择None,这样每一要素就只计数一次,将广州小区作为点要素,故选择 None。搜 索半径可采区默认方式,通常默认搜索半径(带宽)是基于空间配置和输入点 数计算的,此方法可更正空间异常值(距离其他输入点非常远的点),这样将不会导致搜索半径过大,当然也可以自定义搜索半径,不同半径成图渲染效果不同。

(4)参数设置完成后,还须对分析环境进行设置,单击上图环境选项,弹出对话框,按照下图进行参数设置。在处理范围一项,将范围设置为与广州图层相同。栅格分析一项,将掩膜设置为广州图层。

(5)所有参数设置完毕后,点击确定,自动生成以下图层,同时也可以对自 动生成的分类级别进行自定义,单击图层【属性】→【符号系统】→【已分类】。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

端木宛白的GIS课堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值