量化投资分析平台 迅投 QMT(五)我对期权的理解和定义,普及向,无代码

迅投 QMT

我目前在使用

两个月前(2024年4月)迅投和CQF有一个互动的活动,进行了平台的一个网上路演,刚好我也去听了,感觉还是挺不错的。后来与“客服麻瓜”进行了对QMT的深入了解和使用,最后决定买了他们的服务。注册就可以进行试用,但是是有期限的。如果只是单方面的研究的话,还是建议用稍微便宜些的平台,我主要是需要期权的实时数据进行分析和交易。

什么是期权(麦记的故事)

我经常举这个栗子给我的一些想了解期权的朋友:麦当劳现在有一个圣诞节超级稣哥套餐活动,在圣诞节当天限量版稣哥套餐卖100元一套,仅限12月25日当天才有,且先到先得。现在可以在7月1日以10元的价格购买稣哥套餐券,并且金拱门保证必定会以70元的价格卖给持劵人。我们来算一算:

  1. 如果我不买券,我可能会以100元的价格买到这个套餐;如果我买券,我将会以80块钱(70套餐+10元券)的成本享受到100元的套餐,里外里,省20元(或挣20元,或20%收益)。
  2. 我在12月15日突然有事儿,可能赶不上这个麦记的套餐活动,刚好我一个朋友也打算体验一下这个套餐,我以15元的价格卖给了我的朋友。我10元购买的,15元卖的,赚5元,盈利50%。朋友15元购券,70元购得套餐,85元总支出享用100元套餐,省15元,或15%收益。
  3. 我买了券儿后压根儿就没记得这档事儿,1月春节才想起来,10元购得的券,套餐没吃到,浪费10元,亏损100%。
  4. 我买了券儿后,麦记觉得100元的价格太贵了,市场反响不够强烈,把套餐的销售价格下调到50元一份了,10元券+70元套餐一共80元的费用,现在只要50元,亏本呢,所以我不要这个券了,浪费了10元,亏100%。
  5. 我12月25日如愿以偿以70元的价格买到100元的套餐,隔壁大哥恳求我卖给他,他出200元,我不好意思的答应了他。10元券+70元成本,200元卖掉,赚120。
  6. 再或者,12月24日平安夜,由于该套餐太火爆,价格从100元飙升至200元,我含泪以50元的价格卖给了我老板。我盈利400%,老板盈利(省下200-50-70)80元。

我们来梳理一下这个故事:

  1. 这个10元的券儿就是今天的主角期权
  2. 100元的套餐就是标的资产
  3. 70元的优惠价格就是行权价
  4. 12月25日就是行权日
  5. 第三、四个例子,我可能亏完,虽然亏完了但是有限。亏损有限
  6. 第五、六个例子,只要价格持续上涨,我的利润是无限的。盈利无限

听起来真的挺不错的呀,这只是一些简单的买方角度的栗子,看着挺美好的哈?但是麦记卖方那边其实也是很有故事的,那我们现在来深入地讲讲期权到底是个怎么的形式存在的吧。

期权的一些概念

  1. 期权类别分两种:Call和Put;购和沽;
  2. 期权买卖分两种:Long或Short;多或空;买方或卖方;
  3. 期权组合就有四种:long call, long short, short call, short put; 多购(看涨),多沽(看跌),空购(看不涨),空沽(看不跌);
MATRIXCALL 购PUT 沽
LONG 买 多LONG CALL 看涨LONG PUT 看跌
SHORT 卖 空SHORT CALL 看不涨SHORT PUT 看不跌
  1. 买方,没有义务,只有行权的权利,买方购买时支付权利金;
  2. 卖方,有义务,必须履行义务,卖方需要保证金(押金),而且根据仓位情况每天都会变动;
  3. 买方挣取的是卖方的义务,卖方挣取的是买方的权利金;
  4. 举栗:现在沪深300ETF的收盘价是3块6:
  5. ATM:at-the-money, 平价期权,行权价为3.6的期权就是平价期权,购沽双方都无所谓;
  6. OTM:out-the-money, 虚值期权,价格便宜,到期虚值期权价格趋近于0; ITM:in-the-money, 实值期权,价格贵;
  7. 购3.7+和沽3.5-的期权都是虚值期权;沽3.7+和购3.5-的期权都是实值期权;
  8. 剩余的3个重要要素:
  9. 重中之重:隐含波动率(implied volatility),这个咱们下一讲细聊。与其相对应的是历史波动率或波动率,经典指标有ATR和ADX;
  10. 无风险利率(Risk-Free Rate,rfr,r),钱都是有成本的,或者说机遇成本;
  11. 到期行权日(Expiration Date,t),对于一个有期限的玩意儿,时间是很重要的,因为期权有时间价值;
  12. 提前预热:买方最大的敌人就是时间价值,卖方最喜欢挣时间价值的钱;

为什么做期权?

你猜?!我反正是觉得A股市场的股票单向投资T+1风险不是一般得大,且很离谱。就这一点我觉得就够了。至少ETF没有什么庄什么鬼的,我只需要读懂大盘即可!

下一讲可能就比较干了,我准备和大家聊聊BSM定价模型,期权绕不开它!大名鼎鼎的布莱克 · 舒尔斯 · 莫顿定价模型,如雷贯耳!1997年诺贝尔经济学奖获得者

希望大家能够给予一键三连啥的,您的鼓励就是我最大的动力!

历史帖子

量化投资分析平台 迅投 QMT(一)激活python迅投对接端口
量化投资分析平台 迅投 QMT(二)服务器端订阅下载数据
量化投资分析平台 迅投 QMT(三)字典数据下载后读取成Dataframe形式
量化投资分析平台 迅投 QMT(四)获取标的期权的代码

迅投QMT(Quant Momentum Trading)是一种基于趋势跟踪的量化投资策略,通常涉及对历史价格数据的分析,寻找资产价格的上升或下降趋势,并据此做出买卖决策。在编写具体的策略代码时,添加输入框是为了允许用户自定义策略的一些关键参数,比如时间窗口、过滤条件、交易阈值等。 下面是一个简单的示例,说明如何在Python的Quantopian API或者相关的量化编程环境中添加输入框: ```python # 导入必要的库 from quantopian.algorithm import attach_pipeline, pipeline_output # 创建一个Pipeline实例 def initialize(context): # 添加一个输入框,例如用户可以设置的趋势天数 context.trend_days = pipeline.Input([60], 'trend_days', dtype=int) # 定义Pipeline函数,这里只是一个基础模板 def make_pipeline(): # 使用context.trend_days作为参数创建一个过滤器 trend_filter = SimpleMovingAverage(inputs=[USEquityPricing.close], window_length=context.trend_days) # 返回管道,包含过滤后的数据 return Pipeline( columns={ 'Trend': trend_filter, }, screen=trend_filter > 0 # 只选择有上升趋势的股票 ) # 在回测开始前获取用户的输入 def before_trading_start(context, data): # 设置策略参数 context.pipeline = make_pipeline() context.pipeline.set_screen(context.pipeline['Trend']) # 策略主体... (在这里使用pipeline_output()获取输入箱设置的结果) ``` 在这个例子中,用户通过Quantopian平台或脚本运行环境提供`trend_days`的值,这个值会被策略代码用于计算移动平均线,进一步决定哪些股票应被纳入策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mike_Leigh

您的鼓励就是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值