Unet环境配置pytroch框架

这篇博客详细介绍了如何搭建PyTorch深度学习环境,包括安装Anaconda来管理环境,下载并安装CUDA和CUDNN以支持GPU运算,最后在Anaconda环境下安装PyTorch及其依赖库。步骤清晰,适合初学者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境配置

先安装Anaconda,再安装cuda,配置torch环境


一、Anaconda安装


Anaconda的安装主要是为了方便环境管理,可以同时在一个电脑上安装多种环境,不同环境放置不同框架:pytorch、tensorflow、keras可以在不同的环境下安装,只需要使用conda create –n创建新环境即可。

1、Anaconda的下载

anaconda的下载:
如果想要安装最新的Anaconda,首先登录Anaconda的官网:https://www.anaconda.com/distribution/。直接下载对应安装包就可以。
一般是下载64位的,下载完成后打开。

2、Anaconda的安装

                               

选择安装的位置,可以不安装在C盘。

                               

我选择了Add Anaconda to my PATH environment variable,这样会自动将anaconda装到系统的环境变量中,配置会更加方便一些。

                               

等待安装完之后,Anaconda的安装就结束了。

二、Cudnn和CUDA的下载和安装


我这里使用的是torch=1.2.0,官方推荐的Cuda版本是10.0,因此会用到cuda10.0,与cuda10.0对应的cudnn是7.4.1。

1、Cudnn和CUDA的下载


网盘下载:
链接: https://pan.baidu.com/s/1znYSRDtLNFLufAuItOeoyQ
提取码: 8ggr

官网下载:
cuda10.0官网的地址是:
cuda10.0官网
cudnn官网的地址是:需要大家进去后寻找7.4.1.5。
cudnn官网

下载完之后得到这两个文件。

2、Cudnn和CUDA的安装

注意:安装前关闭360,安全管家等,不然在安装到一半时出现  xxx.dll文件拒绝访问
下载好之后可以用管理员方法打开exe文件进行安装

                         

这里选择自定义

                       

然后直接点下一步就行了

                          

安装完后在C盘这个位置可以找到根目录C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0     

然后把下载好的Cudnn的内容进行解压,解压之后如下图

   

把解压之后的内容直接复制到C盘的根目录下C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0  就可以了


三、配置torch环境


1、pytorch环境的创建与激活


Win+R启动cmd,在命令提示符内输入以下命令:

conda create –n pytorch python=3.6
activate pytorch

这里一共存在两条指令:
前面一条指令用于创建一个名为pytorch的环境,该环境的python版本为3.6。
后面一条指令用于激活一个名为pytorch的环境。

2、pytorch库的安装


由于我们所有的操作都要在对应环境中进行,所以在进行库的安装前需要先激活环境。

activate pytorch 

此时cmd窗口的样子为:


a、官方推荐安装方法(推荐)
打开pytorch的官方安装方法:
https://pytorch.org/get-started/previous-versions/
官网推荐的安装代码如下,我使用的是Cuda10的版本,不太懂为什么要写3个=才能正确定位,两个=会定位到cuda92的whl:

# CUDA 10.0
pip install torch===1.2.0 torchvision===0.4.0 -f https://download.pytorch.org/whl/torch_stable.html


这是pytorch官方提供的指令,用于安装torch和torchvision。

b、先下载whl后安装
需要注意的是,直接这样安装似乎特别慢,因此我们可以进入如下网址:
https://download.pytorch.org/whl/torch_stable.html
找到自己需要的轮子下载。下载的时候使用迅雷下载就行了,速度还是比较快的!

                                 


下载完成后找到安装路径:

                               

在cmd定位过来后利用文件全名进行安装就行了!

                          

这里我也传一个百度网盘的版本
链接: https://pan.baidu.com/s/14-QVk7Kb_CVwaVZxVPIgtw
提取码: rg2e
全部安装完成之后重启电脑。

3、其它依赖库的安装


但如果想要跑深度学习模型,还有一些其它的依赖库需要安装。具体如下:

scipy==1.2.1
numpy==1.17.0
matplotlib==3.1.2
opencv_python==4.1.2.30
torch==1.2.0
torchvision==0.4.0
tqdm==4.60.0
Pillow==8.2.0
h5py==2.10.0


如果想要更便捷的安装可以在桌面或者其它地方创建一个requirements.txt文件,复制上述内容到txt文件中

Win+R启动cmd,在命令提示符内输入以下命令:

pip install -r requirements.txt

至此Unet的环境已完成!

服务器cuda版本的命令

nvidia-smi

笔记本电脑的cuda版本命令(win安装torch是cuda的版本用nvcc -V查看)

nvcc -V

tensorflow 的下载Links for tensorflow (tsinghua.edu.cn)https://pypi.tuna.tsinghua.edu.cn/simple/tensorflow/

### 关于ComfyUI UNet安装指南 在探讨ComfyUI及其组件如UNet安装过程中,了解整个框架的基础对于顺利集成特定模块至关重要。针对ComfyUI的选择理由、优缺点分析等内容已在先前的教学材料中有过详细介绍[^1]。 #### 下载与环境准备 要开始安装ComfyUI连同其扩展包比如UNet,需先访问官方资源库获取最新版本的应用程序文件。确保计算机满足最低配置需求,并已预先设置好Python开发环境,这一步骤同样适用于其他依赖项的部署。 #### 安装ComfyUI基础平台 按照官方文档指示完成核心系统的安装过程之后,可以进一步探索更多高级特性。此部分操作涉及命令行工具的运用: ```bash git clone https://github.com/comfyanonymous/ComfyUI.git cd ComfyUI pip install -r requirements.txt ``` #### 配置UNet支持 为了使ComfyUI能够利用UNet架构执行图像处理任务,还需额外引入必要的软件包和支持库。具体做法如下所示: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 pip install git+https://github.com/CompVis/stable-diffusion.git@main#egg=ldm&subdirectory=ldm ``` 上述指令不仅会拉取PyTorch及相关视觉处理工具集,还会从指定仓库克隆Stable Diffusion项目中的`ldm`子目录作为UNet实现的一部分。 #### 测试安装成果 最后,在确认所有必需组件均已正确加载的前提下,可以通过运行几个简单的测试案例来验证新功能是否正常运作。例如尝试加载预训练好的UNet模型并对样本图片实施变换效果评估。 ```python from ldm.models.diffusion.ddpm import LatentDiffusion import torch model = LatentDiffusion.load_from_checkpoint('path_to_unet_model.ckpt') sample_image = ... # 加载一张用于测试的图片 transformed_image = model(sample_image) ``` 以上即为基于现有资料整理而成的一份简易版ComfyUI UNet安装指导手册。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值