yolov4-tiny的部署

该博客详细介绍了在PyTorch框架下,如何配置Unet环境并进行数据集制作,包括使用labelimg进行标注,以及将标注文件与图片放入指定目录。接着,作者演示了Yolov4-tiny模型的训练步骤,只需运行train.py即可开始训练。此外,还阐述了模型预测过程,涉及权重文件的复制、yolo.py和predict.py的参数调整。
摘要由CSDN通过智能技术生成

一、环境配置

见上篇文章 (112条消息) Unet环境配置pytroch框架_风吹吹就过的博客-CSDN博客icon-default.png?t=M276https://blog.csdn.net/weixin_44751438/article/details/123056809?spm=1001.2014.3001.5501

二、yolov4-tiny的训练及预测

1.数据集的制作

1)进行标注

Win+R启动cmd,在命令提示符内输入以下命令:

labelimg

 注意将标签文件放入到Annotations文件夹当中,将图片放入到JPEGImages中

2)将Annotations和JPEGImages文件夹复制到 VOCdevkit/VOC2007路径下

3)打开voc_annotation.py文件

首先,修改 annotation_mode = 0 运行,生成下面四个文件

其次,修改 annotation_mode = 2 运行,生成下面两个文件

 4)修改model_data/voc_classes.txt当中的类别即可

 2.训练数据集

运行 train.py文件即可开始训练

三、预测

1.将logs下的权重文件复制到model_data

 2.修改yolo.py文件中下图所示内容

3.打开 predict.py进行预测

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值