Pytorch中model.train()和model.eval()

Crystal的博客

Pytorch中model.train()和model.eval()

问题:

刚开始接触pytorch时,发现别人的代码中,会在训练模型的一开始写上model.train(),对应的,在测试模型一开始写上model.eval()。我尝试不使用这两句,发现程序仍然能够正常运行,所以就非常好奇这两句有什么作用,为什么要这么写。

解答:

(1) 用法:这两个方法是针对在模型训练和评估时采用不同的方式的情况。如果模型中有BN层(Batch Normalization)和正则化Dropout,需要在训练模型的一开始添加model.train(),在测试模型的一开始添加model.eval()。
(2) 原因: model.train()保证BN层使用每一批数据的均值和方差,而model.eval()保证BN用全部训练数据的均值和方差;而对于Dropout,model.train()是随机选取一部分网络连接来训练模型,更新参数,而model.eval()使用了所有网络连接。

补充:

BN针对网络中的每一层进行归一化处理,训练时是分批的,而测试的时候针对的是全部数据。
Dropout能够以一定的概率激活神经元,忽略网络中的一些神经元,因此能够减少过拟合的现象。

### 回答1: 在PyTorch,`model.train()`和`model.eval()`是用于设置模型训练模式和评估模式的方法。 当调用`model.train()`时,模型会进入训练模式。在训练模式下,模型会启用一些特定的功能,例如批量归一化和Dropout等。这些功能在训练期间是有用的,但在评估期间不需要。 当调用`model.eval()`时,模型会进入评估模式。在评估模式下,模型会关闭训练期间的一些特定功能,以确保评估结果的一致性和可靠性。 在训练期间,通常需要将模型设置为训练模式,以便在每个批次更新模型参数。而在评估期间,需要将模型设置为评估模式,以便在测试集或验证集上进行评估,以便了解模型的性能。 需要注意的是,在调用`model.eval()`方法后,模型权重不会被修改。所以,如果需要继续训练模型,请确保在继续训练前调用`model.train()`方法,以将模型设置为训练模式。 ### 回答2: 在PyTorchmodel.train()和model.eval()都是用来设置模型的训练模式的方法。 当调用model.train()方法时,模型的状态被设置为训练模式。这意味着模型会启用Batch Normalization和Dropout等训练专用的层或操作,并且会自动计算梯度以便进行反向传播和参数更新。在模型进行迭代训练时,应该使用train()方法来确保模型运行在正确的模式下。 相反,当调用model.eval()方法时,模型的状态被设置为评估模式。在评估模式,模型会固定住Batch Normalization和Dropout等训练专用的层或操作的值,以便进行模型的前向传播。这使得我们可以获得模型在评估数据上的输出。在测试、验证或推断模型时,应该使用eval()方法。 需要注意的是,当模型被调用时,它将自动在前向传播和后续计算切换到适当的模式。因此,在每个模型被调用前,我们通常只需要调用train()或eval()方法一次即可。 综上所述,model.train()和model.eval()方法在PyTorch用于设置模型的训练模式和评估模式,以确保模型在正确的状态下进行训练和评估。 ### 回答3: 在PyTorchmodel.train()和model.eval()是用来控制模型训练和评估过程的方法。 model.train() 方法主要用于将模型切换到训练模式。在训练模式下,模型会启用 Dropout 和 Batch Normalization 等操作的训练过程,以及训练数据的随机打乱。这种模式适合用于训练阶段,可以帮助模型更好地学习数据的特征和模式。 model.eval() 方法主要用于将模型切换到评估模式。在评估模式下,模型会禁用 Dropout 和 Batch Normalization 等操作的随机性,以保证结果的确定性。这种模式适合用于模型的验证和测试阶段,可以保证模型的输出能够可靠地进行评估。 当我们进行模型的训练时,一般会通过在每个批次数据上调用model.train()切换到训练模式,并且在每个批次数据上进行前向计算和反向传播来更新模型的权重。而在验证或测试阶段,会通过调用model.eval()切换到评估模式,并且只进行前向计算来生成模型的输出结果,以评估模型的性能。 总之,model.train()和model.eval()主要用于控制模型的训练和评估过程。通过切换模式,可以灵活地控制模型的操作,使其在不同的阶段达到最佳的效果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值