大数据学习之搭建Spark开发环境(Local模式)

一、环境准备:

Linux系统:Centos6.8
Hadoop:2.6.4
JDK:1.8
Spark:2.4.7

下载Spark

选择spark对应的Hadoop版本

链接:http://spark.apache.org
官网下载spark

二、搭建环境:

1、解压Spark安装包
tar -zxvf spark-2.4.7-bin-hadoop2.6.tgz -C /usr/local
2、重命名Spark目录名(便于以后使用)
cd /usr/local	# 进入local目录
mv spark-2.4.7-bin-hadoop2.6/ spark	# 重命名
3、修改spark配置文件

(1)修改spark-env.sh文件

cd spark/conf		#进入spark配置文件目录
# 将spark-env.sh.template文件复制一份并命名为spark-env.sh
cp spark-env.sh.template spark.env.sh	

修改内容如下:
Ps: 请根据自己的实际环境路径修改

# JAVA_HOME 
export JAVA_HOME=/usr/java/jdk1.8.0_171
# master-ip
export SPART_MASTER_HOST=master
# master-port
export SPART_MASTER_PORT=7077
# hadoop_conf
export HADOOP_CONF_DIR=/usr/local/hadoop-2.6.4/etc/hadoop

(2)修改slaves文件

# 复制slaves.template并命名为slaves
cp slaves.template slaves

# 编辑slaves
vim slaves

slaves添加内容如下:
Ps:先把Localhost删除再添加以下内容
在这里插入图片描述

4、分发spark文件到其他节点(slave1,slave2)
scp -r /usr/local/spark/ slave1:/usr/local
scp -r /usr/local/spark/ slave2:/usr/local

到这里就完成搭建Spark(local模式)集群的配置

5、启动Spark集群

Ps:启动Spark之前先启动Hadoop集群

# 进入spark/sbin目录
cd /usr/local/spark/sbin

# 启动Spark
./start-all.sh

启动成功后jps查看进程:
master的进程为Master
slave1,slave2 的为Worker在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

之后便去查看Spark的管理界面,查看集群状态

链接: http://master:8080/
在这里插入图片描述
这样就启动完成啦!
最后就是配置一下profile文件写入spark环境变量

vim /etc/profile

添加内容如下:
在这里插入图片描述
搭建Spark(Local模式)到此结束

扩展补充:
启动spark shell:(spark/bin下)

# ./spark-shell --master <master-url>  (master-url用于指定spark运行模式)

./spark-shell --master local 	# 使用一个Worker线程本地化运行
./spark-shell --master local[*]	# 本地运行spark,线程数与本机CPU核心数相同
./spark-shell --master local[N] # 使用N个Worker线程本地化运行

在这里插入图片描述
退出Spark shell:
Ctrl + z 或者 输入 :quit

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值