Backtrader(二十三)- 多股票回测

多数据策略跌代表详解

场景:有多个相同时间粒度的股票数据参与策略,不同股票数据时间并不一致

             日期     开盘     收盘     最高     最低     成交量          成交额     振幅  \
0    2020-12-22  38.44  33.67  38.44  32.96   89625  582730960.0  31.08   
1    2020-12-23  30.11  29.91  32.33  28.11   69495  371508160.0  12.53    
..          ...    ...    ...    ...    ...     ...          ...    ...    
268  2022-01-27  22.19  26.46  26.46  19.40  170094  401386096.0  32.02   
269  2022-01-28  25.18  31.75  31.75  24.80  231780  667065776.0  26.27  
              日期     开盘     收盘     最高     最低     成交量          成交额     振幅  \
0     2011-08-03  10.23  10.51  10.56   9.93   71465  313417139.0  11.43   
1     2011-08-04  10.28  10.51  11.41  10.19   51287  236224255.0  11.61   
2     2011-08-05   9.85   9.88  10.26   9.44   29797  126299472.0   7.80     
...          ...    ...    ...    ...    ...     ...          ...    ...      
2428  2022-01-26  14.59  15.91  16.92  14.59  517903  840837280.0  16.52   
2429  2022-01-27  15.12  13.01  15.20  13.01  395628  558582736.0  13.76   
2430  2022-01-28  13.51  15.61  15.61  13.18  331606  498365328.0  18.68

数据最小日期:数据最小期的bar对应的日期。这里第一份数据的最小日期是:2020-12-22,第二份数据的最小日期是:2011-08-03

策略最小日期:策略最小日期是个数据中最大的数据最小日期。在上面这两份数据中是 2020-12-22。backtrader会从策略最小日期开始进行next方法。

图1
在这里插入图片描述注意:当第一份数据未到达策略最小日期,它的长度将一直为0,且数据取数据的最后一条
在这里插入图片描述

注意2:

图1,策略最小日期开始进行next方法,那么策略最小周期之前的数据就浪费了,可以通过在 prenext 中跳转 next 避免

    def prenext(self):
        self.next()
backtrader是一个开源的Python框架,用于进行多股票回测。它提供了丰富的工具和功能,可以帮助我们进行高效准确的策略回测。 在backtrader中,我们可以很方便地定义自己的交易策略,并将其应用到多支股票回测中。首先,我们需要创建一个策略类,其中包含我们想要实现的交易逻辑和规则。backtrader提供了丰富的内置指标和工具,可以方便地辅助我们进行技术分析和信号生成。 接着,我们需要创建一个数据源,来获取多支股票的历史数据。backtrader支持多种数据源,包括CSV文件、Pandas DataFrame和在线数据源等。我们可以使用backtrader内置的数据加载器来导入和管理股票数据。 一旦我们定义好了策略和数据源,就可以创建一个回测引擎,并将策略和数据源添加到回测引擎中。backtrader提供了负责管理交易运行和结果分析的回测引擎,可以帮助我们简化回测过程和结果的获取。 在回测过程中,backtrader会自动按照我们定义的策略规则进行买卖操作,并计算每日的收益率和持仓情况。我们可以通过backtrader的结果分析工具来获取回测结果和统计指标,如累计收益、年化收益率和夏普比率等。 总之,backtrader提供了一个强大而灵活的框架,可以帮助我们进行多股票回测。通过定义交易策略、导入股票数据和使用回测引擎,我们可以进行有效的投资组合管理和策略优化,提高投资决策的准确性和效率。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值