刷题 特殊题

KMP 算法

KMP算法的核心问题就是,当滑动某一个字符匹配失败时,i 和 j 指针应当怎么移动?

8. 找出字符串中第一个匹配项的下标

在这里插入图片描述

暴力

暴力解法:直接将 i 移动到 0, j 移动 到 start + 1

class Solution {
public:
    int strStr(string haystack, string needle) {
        size_t i = 0, j = 0, start = 0;
        while (i < haystack.size() && j < needle.size()) {
            if (haystack[i] == needle[j]) {
                ++i;
                ++j;
                if (j == needle.size()) {
                    return start;
                }
            } else {
                ++start;
                i = start;
                j = 0;
            }
        }
        return -1;
    }
};

KMP 算法

根据最长公共前后缀长度来移动 i 和 j 指针
在这里插入图片描述

class Solution {
public:
    // 求 next 数组的核心,始终维持 **最长公共前后缀的长度**
    std::vector<int> getNext(const std::string& pattern) {
        int n = pattern.size();
        std::vector<int> next(n, 0);
        int j = 0;                  // j 表示当前前缀的末尾位置
        for (int i = 1; i < n; ++i) {
            while (j > 0 && pattern[i] != pattern[j]) { // 为什么 j > 0, 因为当 j = 0 的时候应当停止回退
                j = next[j - 1];    // 回退到前一个位置的最长相等前后缀长度
            }
            if (pattern[i] == pattern[j]) {
                ++j;                // 如果当前字符匹配,则最长相等前后缀长度加1
            }
            next[i] = j;            // 记录当前位置的最长相等前后缀长度
        }
        return next;
    }
    int strStr(string text, string pattern) {
        int n = pattern.size();
        int m = text.size();
        std::vector<int> next = getNext(pattern);
        int i = 0;  // text 的索引
        int j = 0;  // pattern 的索引
        while (i < m) {
            if (pattern[j] == text[i]) {
                ++i;
                ++j;
            }
            if (j == n) {
                // 找到匹配的位置
                return i - j;
            } else if (i < m && pattern[j] != text[i]) {
                if (j != 0) {
                    j = next[j - 1];    // 回退到 next 数组中的位置
                } else {
                    ++i;                // 如果 j 为 0,则继续比较下一个字符
                }
            }
        }
        // 没有找到匹配
        return -1;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值