KMP 算法
KMP算法的核心问题就是,当滑动某一个字符匹配失败时,i 和 j 指针应当怎么移动?
8. 找出字符串中第一个匹配项的下标
暴力
暴力解法:直接将 i 移动到 0, j 移动 到 start + 1
class Solution {
public:
int strStr(string haystack, string needle) {
size_t i = 0, j = 0, start = 0;
while (i < haystack.size() && j < needle.size()) {
if (haystack[i] == needle[j]) {
++i;
++j;
if (j == needle.size()) {
return start;
}
} else {
++start;
i = start;
j = 0;
}
}
return -1;
}
};
KMP 算法
根据最长公共前后缀长度来移动 i 和 j 指针
class Solution {
public:
// 求 next 数组的核心,始终维持 **最长公共前后缀的长度**
std::vector<int> getNext(const std::string& pattern) {
int n = pattern.size();
std::vector<int> next(n, 0);
int j = 0; // j 表示当前前缀的末尾位置
for (int i = 1; i < n; ++i) {
while (j > 0 && pattern[i] != pattern[j]) { // 为什么 j > 0, 因为当 j = 0 的时候应当停止回退
j = next[j - 1]; // 回退到前一个位置的最长相等前后缀长度
}
if (pattern[i] == pattern[j]) {
++j; // 如果当前字符匹配,则最长相等前后缀长度加1
}
next[i] = j; // 记录当前位置的最长相等前后缀长度
}
return next;
}
int strStr(string text, string pattern) {
int n = pattern.size();
int m = text.size();
std::vector<int> next = getNext(pattern);
int i = 0; // text 的索引
int j = 0; // pattern 的索引
while (i < m) {
if (pattern[j] == text[i]) {
++i;
++j;
}
if (j == n) {
// 找到匹配的位置
return i - j;
} else if (i < m && pattern[j] != text[i]) {
if (j != 0) {
j = next[j - 1]; // 回退到 next 数组中的位置
} else {
++i; // 如果 j 为 0,则继续比较下一个字符
}
}
}
// 没有找到匹配
return -1;
}
};