Github复现之TransUNet之踩坑

Github复现之TransUNet

代码复现TransUnet可以看这篇文章,博主写的还是很详细的。
复现TransUnet,博主提供的数据集是10241024的用的时候要裁剪成256256

以下是在调试代码时候遇到的一些踩坑问题

  • CUDA的问题在这里插入图片描述
    根据自己的显卡配置CUDA环境,配置CUDA可以看这篇文章,这里注意的是安装的torch要安装gpu版本,最好去官网下载。如果要换cpu计算的话,将torch换成cpu版本的再把代码中用的.cuda()都换成.to(device)在这里插入图片描述

  • RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED
    把train_normal.py的50行那个Dice_bce_loss替换成Diceloss

  • 预测函数的问题
    原代码提供的预测函数一直不理解为啥要对img先进行90°旋转再与元数据连接等等一系列操作,用原代码中的预测函数导致我预测的结果是对称的,就很奇怪。后经过调整把用的验证数据精度那的预测函数后结果就正常了。

    def test_one_img(self, img):
        # pred = self.net.forward(img).cpu()
        img = np.expand_dims(img, axis=0)
        img = V(torch.Tensor(img).cuda())
        pred = self.net.forward(img)
        mask = pred.squeeze().cpu().data.numpy()
        return mask

其他都是一些很小的问题了,看提示也能解决。

评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值