1 为什么
对数值类型的特征进行归一化是为了确保不同特征之间的数值范围一致,从而有助于机器学习模型更好地理解和处理数据。以下是一些常见的原因和好处:
-
梯度下降:在许多机器学习算法中,如线性回归、支持向量机、神经网络等,都使用梯度下降来最小化损失函数。如果不对特征进行归一化,那些具有较大范围值的特征可能会主导梯度下降的过程,导致收敛速度变慢甚至无法收敛。通过归一化,可以使梯度下降更快速地找到全局最优解。
-
特征权重的一致性:在某些模型中,例如线性模型,模型的权重(系数)与特征的数值大小相关。如果特征没有归一化,那么模型可能会赋予值较大的特征更高的权重,导致模型的解释性降低并且难以解释。
-
K-means 聚类:K-means 聚类算法是一种基于距离的算法,如果特征的数值范围不一致,会导致聚类结果受到特征数值大小的影响。通过归一化,可以确保各个特征对聚类结果的贡献相对均衡。
-
正则化:在正则化线性模型(如岭回归或 Lasso 回归)时,正则化项的惩罚力度可能会受到特征尺度的影响。归一化可以确保正则化对所有特征的影响是一致的。
</