1. 为什么要对数值类型的特征做归一化,介绍常见归一化方法?

数值特征的归一化能确保机器学习模型更好地处理数据,加速梯度下降过程,保持特征权重一致性,优化K-means聚类效果,以及在正则化中保持公平。常见方法包括Min-Max归一化和标准化。Min-Max归一化将数据映射到[0, 1],而标准化使数据符合均值0,标准差1的正态分布。选择方法需考虑数据分布和模型需求。" 113522466,10551833,MySQL GTID 时间点恢复步骤,"['数据库管理', 'MySQL恢复', 'GTID']
摘要由CSDN通过智能技术生成
1 为什么        

        对数值类型的特征进行归一化是为了确保不同特征之间的数值范围一致,从而有助于机器学习模型更好地理解和处理数据。以下是一些常见的原因和好处:

  1. 梯度下降:在许多机器学习算法中,如线性回归、支持向量机、神经网络等,都使用梯度下降来最小化损失函数。如果不对特征进行归一化,那些具有较大范围值的特征可能会主导梯度下降的过程,导致收敛速度变慢甚至无法收敛。通过归一化,可以使梯度下降更快速地找到全局最优解。

  2. 特征权重的一致性:在某些模型中,例如线性模型,模型的权重(系数)与特征的数值大小相关。如果特征没有归一化,那么模型可能会赋予值较大的特征更高的权重,导致模型的解释性降低并且难以解释。

  3. K-means 聚类:K-means 聚类算法是一种基于距离的算法,如果特征的数值范围不一致,会导致聚类结果受到特征数值大小的影响。通过归一化,可以确保各个特征对聚类结果的贡献相对均衡。

  4. 正则化:在正则化线性模型(如岭回归或 Lasso 回归)时,正则化项的惩罚力度可能会受到特征尺度的影响。归一化可以确保正则化对所有特征的影响是一致的。

    </
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

轨迹的路口

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值