表面重力波推导

表面重力波推导
0 概念定义
0.1 0.1 0.1 速度势
当流体作无旋运动时, 运动方程和连续方程将具有非常简单的形式. 首先, 速度旋度 为零 ( ∇ × V = 0 ) (\nabla \times \boldsymbol{V}=0) (×V=0) 的条件保证在任何单连通域内存在单值速度势 φ ( x , y , z , t ) \varphi(x, y, z, t) φ(x,y,z,t); 使得
V = ∇ φ ( x , y , z , t ) , \boldsymbol{V}=\nabla \varphi(x, y, z, t), V=φ(x,y,z,t),

u = ∂ φ ∂ x , v = ∂ φ ∂ y , w = ∂ φ ∂ z , u=\frac{\partial \varphi}{\partial x}, v=\frac{\partial \varphi}{\partial y}, w=\frac{\partial \varphi}{\partial z}, u=xφ,v=yφ,w=zφ,
1 无限深度水域

  1. 1 边界条件
    (1)水域底部的运动学边界条件
    ∂ φ ∂ n ∣ x = − d = 0 \left.\frac{\partial \varphi}{\partial n}\right|_{x=-d}=0 nφ x=d=0
    (2)自由表面运动学边界条件
    ∂ φ ∂ z ∣ z = ζ = ∂ ζ ∂ t + ∂ ζ ∂ x ∂ φ ∂ x ∣ z = ζ + ∂ ζ ∂ y ∂ φ ∂ y ∣ z = ζ , \left.\frac{\partial \varphi}{\partial z}\right|_{z=\zeta}=\frac{\partial \zeta}{\partial t}+\left.\frac{\partial \zeta}{\partial x} \frac{\partial \varphi}{\partial x}\right|_{z=\zeta}+\left.\frac{\partial \zeta}{\partial y} \frac{\partial \varphi}{\partial y}\right|_{z=\zeta}, zφ z=ζ=tζ+xζxφ z=ζ+yζyφ z=ζ,
    但在小振幅假定之下, 上式中的乘积项相对于其它两项可以忽略不计, 而且在同样的近似程 度下可认为
    ∂ φ ∂ z ∣ z = ζ ≈ ∂ φ ∂ z ∣ z = 0 , \left.\left.\frac{\partial \varphi}{\partial z}\right|_{z=\zeta} \approx \frac{\partial \varphi}{\partial z}\right|_{z=0}, zφ z=ζzφ z=0,
    于是我们便得到了线性的自由表面运动学边界条件
    ∂ ζ ∂ t = ∂ φ ∂ z ∣ z = 0 , \frac{\partial \zeta}{\partial t}=\left.\frac{\partial \varphi}{\partial z}\right|_{z=0}, tζ=zφ z=0,
    (3)自由表面动力学边界条件
    ∂ φ ∂ t ∣ z = ζ + g ζ + 1 2 ( ∇ φ ⋅ ∇ φ ) ∣ z = ζ + P s ( x , y , t ) ρ = 0 \left.\frac{\partial \varphi}{\partial t}\right|_{z=\zeta}+g \zeta+\left.\frac{1}{2}(\nabla \varphi \cdot \nabla \varphi)\right|_{z=\zeta}+\frac{P_s(x, y, t)}{\rho}=0 tφ z=ζ+gζ+21(φφ) z=ζ+ρPs(x,y,t)=0
    可以略去乘积项 ( ∇ φ ⋅ ∇ φ ) (\nabla \varphi \cdot \nabla \varphi) (φφ), 如果给定自由表面上的压强分布 P S ( x , y , t ) P_S(x, y, t) PS(x,y,t), 我们便得到自 由表面上的动力学边界条件 为
    P s ( x , y , t ) ρ = − ∂ φ ∂ t ∣ z = ζ − g ζ \frac{P_s(x, y, t)}{\rho}=-\left.\frac{\partial \varphi}{\partial t}\right|_{z=\zeta}-g \zeta ρPs(x,y,t)=tφ z=ζgζ
    考虑到小振幅的假定, 上式可改写为
    P s ( x , y , t ) ρ = − ∂ φ ∂ t ∣ z = 0 − g ζ . \frac{P_s(x, y, t)}{\rho}=-\left.\frac{\partial \varphi}{\partial t}\right|_{z=0}-g \zeta . ρPs(x,y,t)=tφ z=0gζ.
    考虑 P S ( x , y , t ) = P_S(x, y, t)= PS(x,y,t)= const 的情形, 可引进新的势函数
    φ ′ = φ + P 0 ρ t , \varphi^{\prime}=\varphi+\frac{P_0}{\rho} t, φ=φ+ρP0t,
    式中 P 0 P_0 P0 为自由表面党压强的数值, 自由表面动力学边界条件变为
    ∂ φ ′ ∂ t ∣ s = 0 + g ζ = 0. \left.\frac{\partial \varphi^{\prime}}{\partial t}\right|_{s=0}+g \zeta=0 . tφ s=0+gζ=0.
    为简便计, 略去上两式中的搬号
    ∂ φ ∂ t ∣ z = 0 + g ζ = 0 \left.\frac{\partial \varphi}{\partial t}\right|_{z=0}+g \zeta=0 tφ z=0+gζ=0
    在常表面压强的条件下,自由表面的运动学边界条件和动力学边界条件可以合并为
    ( ∂ φ ∂ z + 1 g ∂ 2 φ ∂ t 2 ) ∣ z = 0 = 0 \left.\left(\frac{\partial \varphi}{\partial z}+\frac{1}{g} \frac{\partial^2 \varphi}{\partial t^2}\right)\right|_{z=0}=0 (zφ+g1t22φ) z=0=0
  2. 2 求解方程
    因为任一点处的水面都以固定的圆频率 (例如, 记为 ω \omega ω ) 作振动, 所以可以认为波动 场中的有关物理量也具有这一特性。特别, 任一点处的速度势对时间应该呈现简谐形式的 变化。因此波动势函数必具有如下的形式。
    φ = cos ⁡ cot ⁡ ⋅ f ( x , z ) + sin ⁡ ω t ⋅ g ( x , z ) , φ = A ( x , z ) cos ⁡ ( cot ⁡ + ε ( x , z ) ) , \begin{gathered} \varphi=\cos \cot \cdot f(x, z)+\sin \omega t \cdot g(x, z), \\ \varphi=A(x, z) \cos (\cot +\varepsilon(x, z)), \end{gathered} φ=coscotf(x,z)+sinωtg(x,z),φ=A(x,z)cos(cot+ε(x,z)),
    上式中 φ 1 ( x , z ) \varphi_1(x, z) φ1(x,z) 为复值函数, φ \varphi φ 完全由下列方程和边界条件所确定
    { Δ φ = 0 , z < 0 , ( ∂ φ ∂ z + 1 g ∂ 2 φ ∂ t 2 ) ∣ z = 0 = 0 , φ  及其导数有界.  \left\{\begin{array}{l} \Delta \varphi=0, z<0, \\ \left.\left(\frac{\partial \varphi}{\partial z}+\frac{1}{g} \frac{\partial^2 \varphi}{\partial t^2}\right)\right|_{z=0}=0, \\ \varphi \text { 及其导数有界. } \end{array}\right. Δφ=0,z<0,(zφ+g1t22φ) z=0=0,φ 及其导数有界
    对于无限深水域来说, 式 ∂ φ ∂ z + 1 g ∂ 2 φ ∂ t 2 \frac{\partial \varphi}{\partial z}+\frac{1}{g} \frac{\partial^2 \varphi}{\partial t^2} zφ+g1t22φ 不仅当 z = 0 z=0 z=0 时等于零, 而且在整个水域它都为 零, 因此边界条件可以改写为方程的形式, 即
    ∂ φ ∂ z + 1 g ∂ 2 φ ∂ t 2 = 0 , z < 0 \frac{\partial \varphi}{\partial z}+\frac{1}{g} \frac{\partial^2 \varphi}{\partial t^2}=0, z<0 zφ+g1t22φ=0,z<0
    则有方程和边界条件
    { ∂ 2 φ 1 ∂ x 2 + ∂ 2 φ 1 ∂ z 2 = 0 , z < 0 , ∂ φ 1 ∂ z − ω 2 g φ 1 = 0 , z < 0 , φ 1  及  φ 1  的导数有界.  \left\{\begin{array}{l} \frac{\partial^2 \varphi_1}{\partial x^2}+\frac{\partial^2 \varphi_1}{\partial z^2}=0, z<0, \\ \frac{\partial \varphi_1}{\partial z}-\frac{\omega^2}{g} \varphi_1=0, z<0, \\ \varphi_1 \text { 及 } \varphi_1 \text { 的导数有界. } \end{array}\right. x22φ1+z22φ1=0,z<0,zφ1gω2φ1=0,z<0,φ1  φ1 的导数有界
    可求得
    φ ( x , z , t ) = cos ⁡ ω t ⋅ e k z ( A 1 cos ⁡ k x + B 1 sin ⁡ k x ) + sin ⁡ ω t ⋅ e k z ( A 2 cos ⁡ k x + B 2 sin ⁡ k x ) ω 2 = g k } \left.\begin{array}{c} \varphi(x, z, t)=\cos \omega t \cdot e^{k z}\left(A_1 \cos k x+B_1 \sin k x\right) \\ +\sin \omega t \cdot e^{k z}\left(A_2 \cos k x+B_2 \sin k x\right) \\ \omega^2=g k \end{array}\right\} φ(x,z,t)=cosωtekz(A1coskx+B1sinkx)+sinωtekz(A2coskx+B2sinkx)ω2=gk
    2 常值深度水域
  3. 1 方程和边界条件
    此时 φ ( x , z , t ) \varphi(x, z, t) φ(x,z,t) 应满足如下的方程和边界条件:
    { Δ φ = 0 , z < 0 , ( ∂ φ ∂ z + 1 g ∂ 2 φ ∂ t 2 ) ∣ z = 0 = 0 , ∂ φ ∂ z ∣ z = − d = 0. \left\{\begin{array}{l} \Delta \varphi=0, z<0, \\ \left.\left(\frac{\partial \varphi}{\partial z}+\frac{1}{g} \frac{\partial^2 \varphi}{\partial t^2}\right)\right|_{z=0}=0, \\ \left.\frac{\partial \varphi}{\partial z}\right|_{z=-d}=0 . \end{array}\right. Δφ=0,z<0,(zφ+g1t22φ) z=0=0,zφ z=d=0.
  4. 2 求解方程
    当任意点的水面都以固定频率 ω \omega ω 随时间作简谐形式的起伏时, 波动势函数仍然具有 下式实部或虚部的形式
    φ ( x , z , t ) = e i ω t φ 1 ( x , z ) \varphi(x, z, t)=e^{i \omega t} \varphi_1(x, z) φ(x,z,t)=etφ1(x,z)
    代入上面的三个关系式后, 可得到决定 φ 1 ( x , z ) \varphi_1(x, z) φ1(x,z) 的相应方程和边界条件
    ∂ 2 φ 1 ∂ x 2 + ∂ 2 φ 1 ∂ z 2 = 0 , z < 0 , ( ∂ φ 1 ∂ z − ω 2 g φ 1 ) ∣ z = 0 = 0 , ∂ φ 1 ∂ z ∣ z = − d = 0. \begin{aligned} &\frac{\partial^2 \varphi_1}{\partial x^2}+\frac{\partial^2 \varphi_1}{\partial z^2}=0, z<0, \\ &\left.\left(\frac{\partial \varphi_1}{\partial z}-\frac{\omega^2}{g} \varphi_1\right)\right|_{z=0}=0, \\ &\left.\frac{\partial \varphi_1}{\partial z}\right|_{z=-d}=0 . \end{aligned} x22φ1+z22φ1=0,z<0,(zφ1gω2φ1) z=0=0,zφ1 z=d=0.
    参照深水情形, 可取 φ 1 ( x , z ) \varphi_1(x, z) φ1(x,z) 的试解形式为
    φ 1 ( x , z ) = Z ( z ) ( A cos ⁡ k x + B sin ⁡ k x ) , \varphi_1(x, z)=Z(z)(A \cos k x+B \sin k x), φ1(x,z)=Z(z)(Acoskx+Bsinkx),
    式中 A A A B B B 为任意的复常数, 于求得
    φ 1 ( x , z ) = ch ⁡ k ( z + d ) ( A cos ⁡ k x + B sin ⁡ k x ) ω 2 = g k  th  k d . } \left.\begin{array}{l} \varphi_1(x, z)=\operatorname{ch} k(z+d)(A \cos k x+B \sin k x) \\ \omega^2=g k \text { th } k d . \end{array}\right\} φ1(x,z)=chk(z+d)(Acoskx+Bsinkx)ω2=gk th kd.}
    取实部或虚部后,得到最普遍形式的势函数解
    φ ( x , z , t ) = ch ⁡ k ( z + d ) cos ⁡ ω t ( A 1 cos ⁡ k x + B 1 sin ⁡ k x ) + ch ⁡ k ( z + d ) sin ⁡ cot ⁡ ( A 2 cos ⁡ k x + B 2 sin ⁡ k x ) ω 2 = g k  th  k d } \left.\begin{array}{l} \varphi(x, z, t)=\operatorname{ch} k(z+d) \cos \omega t\left(A_1 \cos k x+B_1 \sin k x\right) \\ +\operatorname{ch} k(z+d) \sin \cot \left(A_2 \cos k x+B_2 \sin k x\right) \\ \omega^2=g k \text { th } k d \end{array}\right\} φ(x,z,t)=chk(z+d)cosωt(A1coskx+B1sinkx)+chk(z+d)sincot(A2coskx+B2sinkx)ω2=gk th kd
    3 讨论
    从常深度水域中波的频散关系可得相速度关系
    c 2 = g k  th  k d = g L 2 π  th  k d c^2=\frac{g}{k} \text { th } k d=\frac{g L}{2 \pi} \text { th } k d c2=kg th kd=2πgL th kd
    当水深 d d d 无限时, th k d = 1 k d=1 kd=1, 因此, 波速随波长得增加而增加, 有
    c 2 = g L 2 π c^2=\frac{g L}{2 \pi} c2=2πgL
    当水深相对于波长很小时, th k d ≈ k d k d \approx k d kdkd, 因此, 波速随水深的增加而增加, 有
    c 2 = g d c^2=g d c2=gd
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值