机器学习(周志华) 参考答案 第一章 绪论 1.2 一个不错的解法想法

机器学习(周志华) 参考答案 第一章 绪论 1.2

       这回带来的是西瓜书1.2的更加精简的算法,core i7 八核一秒算完,理论上应该是极为简便的了。

2.与使用单个合取式来进行假设表示相比,使用“析合范式”将使得假设空间具有更强的表示能力。若使用最多包含k个合取式的析合范式来表达1.1的西瓜分类问题的假设空间,试估算有多少种可能的假设。

       这时候我们来思考一下,西瓜书上的冗余其实就是不能有领域的重复覆盖。这时候比起遍历算法,我们可以想另外一种匹配算法:
       我们有一个2 × \times × 3 × \times × 3 的魔方,即(青绿 乌黑)(蜷缩 硬挺 稍蜷) (浊响 沉闷 清脆)的全部配对,那么问题转化为,我们找出全部的方法,使我们在每一个方块中填色一直填满而且不会填两次。
       我们一次可以填一个、一行、一列、一竖列或者一面或者一次一整个。这些都是可以用合取式来表示的,所以问题浅显不?
在这里插入图片描述
       我们最终的目的无非就是把这个魔方填满,找出全部的方法。只需要首先找出全部符合条件的填色方法,之后先假设我们要使用第一种填色方式,试图找出一个填法最复杂的(因为举个例子,乌黑 蜷缩 *其实是由乌黑蜷缩浊响、乌黑蜷缩沉闷、乌黑蜷缩清脆三个构成的)如果我们找到一个最长的填色路径,可以很容易得出比它简单的那些结果。
       仔细地解释一下最复杂,意思就是以某个填色方法填入第一次,之后将魔方填满的最长路径。比这个魔方简化但是也能填满的路径可以直接用肉眼判断出来。

此时问题变得很简单,我们只需要递归就可以了。
我们使用的是matlab,如果用其他程序也一样。
首先上函数:

第一个函数addlist的作用是,收入一个空的魔方(即2

### 关于《机器学习周志华第二章答案 当考虑模型评估与选择时,不同评价指标提供了多角度的理解方法。对于给定的学习器而言,在特定条件下其性能可以通过多种方式衡量。例如,通过McNemar检验来判断两个分类算法在相同数据集上的表现差异是否具有统计学意义[^1]。 若要对比两学习器的总体性能,除了依赖传统的准确率之外,还可以借助受试者工作特征曲线(ROC),特别是当面对不平衡的数据分布情况时更为有效。如果一个学习器的ROC曲线完全覆盖住了另一条,则表明前者的整体性能更佳;而对于存在交叠的情况,则推荐采用曲线下面积(AUC)作为评判标准[^2]。 另外,“平衡点”(Break-Event Point,简称BEP),定义为查准率等于查全率时对应的值,也被用来辅助评估。比如,当某个学习器拥有更高的F1分数时,意味着它同样具备较大的BEP数值,这暗示着该模型可能更适合处理那些对误报和漏报敏感的应用场景[^4]。 针对具体题目解答部分,《机器学习》一中关于真正例率(True Positive Rate, TPR)、假正例率(False Positive Rate, FPR)以及查准率(Precision, P)、查全率(Recall, R)之间关系进行了深入探讨: - **TPR** 和 **R** 实际上是同一个概念的不同表述形式; - **FPR** 则反映了负样本被错误标记的比例; - 查准率P关注的是预测为正类别的实例中有多少是真的正类别成员; - 而查全率R侧重考察实际属于正类别的对象有多少被成功识别出来。 这些度量共同构成了全面理解分类效果的基础框架[^5]。 ```python def calculate_metrics(tp, tn, fp, fn): """ 计算并返回精度(precision), 召回率(recall), 真阳性率(true positive rate) 和 假阳性率(false positive rate). 参数: tp -- 正确预测为正的数量 tn -- 正确预测为负的数量 fp -- 错误预测为正的数量 fn -- 错误预测为负的数量 返回: precision -- 召回率/真阳性率 fpr -- 假阳性率 """ try: precision = tp / (tp + fp) recall_tpr = tp / (tp + fn) fpr = fp / (fp + tn) return round(precision, 3), round(recall_tpr, 3), round(fpr, 3) except ZeroDivisionError as e: print("除数不能为零:", str(e)) ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值