第二章 矩阵变换和计算-笔记与总结

第二章矩阵变换和计算


2.1 矩阵的三角分解及其应用

2.1.1Gauss消去法与矩阵的LU分解

定义 2.1 对于n阶方阵A,如果存在n阶单位下三角形矩阵L和n阶上三角形矩阵U,使得A=LU,则称其为矩阵A的LU分解,也称Doolittle分解。

定理2.1 (矩阵LU分解的存在和唯一性)如果n阶矩阵A的各阶顺序主子式Dk(k=1,2,…,n-1)均不为零,则必有单位下三角形矩阵L和上三角形矩阵U,使得A=LU,而且L和U是唯一的。

Gauss消去的过程求解Ax=b所需的总的乘法计算量为n3/3+n2-n/3,当n较大时,它和n3/3同阶。

2.1.2 Gauss列主元消去法与带列主元的LU分解

定理2.2 对任意n阶矩阵A,均存在置换矩阵P、单位下三角形矩阵L和上三角形矩阵U,使得PA=LU。

2.1.3 对称矩阵的Cholesky分解

定理2.3 (Cholesky分解)对任意n阶对称正定矩阵A,均存在下三角形矩阵L使A=LLT成立(L为对角元为正数下三角形矩阵),称其为对称正定矩阵A的Cholesky分解。进一步,如果规定L的对角元为正数,则L是唯一确定的。

2.1.4 三对角矩阵的三角分解

定理2.4 设具有以下形式的三对角矩阵A,满足条件
在这里插入图片描述

(1)|b1|>|c1|>0
(2)|bn|>|an|>0
(3)|bi|>=|ai|+|ci|,aici不等于0,i=2,3,…,n-1,
则方程组Ax=f可用追赶法求解,且唯一。

2.1.5 条件数和方程组的性态

定义2.2 如果线性方程组Ax=b中,A或b的元素的微小变化,会引起方程组解的巨大变化,则称方程组为“病态”方程组,称矩阵A为“病态”矩阵,否则称方程组为“良态”方程组,称矩阵A为“良态”矩阵。

定义2.3 设A为非奇异矩阵,||·||为矩阵的算子范数,则称cond(A)=||A|| ||A-1||为矩阵A的条件数。常用的条件数为
    cond(A)=||A|| ||A-1||
    cond1(A)=||A||1 ||A-1||1
    cond2(A)=||A||2 ||A-1||2=√(λmax(AHA)/λmin(AHA))

矩阵的条件数具有如下性质:
(1)cond(A)>=1
(2)cond(A)=cond(A-1
(3)cond(xA)=cond(A),x不等于0,x属于R
(4)如果U为正交矩阵,则
    cond2(U)=1
    cond2(UA)=cond2(UA)=cond2(A)
    cond(A)越大,解的相对误差可能越大,A对求解线性方程组来说越可能呈现病态。

定理2.5 设Ax=b,A为非奇异矩阵,b为非零向量且A和b均有扰动,若A的扰动δA非常小,使得||A-1|| ||δA||<1,则
∣ ∣ δ x ∣ ∣ ∣ ∣ x ∣ ∣ < = c o n d ( A ) ∗ c o n d ( A ) 1 − c o n d ( A ) ∣ ∣ δ A ∣ ∣ ∣ ∣ A ∣ ∣ ( ∣ ∣ δ b ∣ ∣ ∣ ∣ b ∣ ∣ + ∣ ∣ δ A ∣ ∣ ∣ ∣ A ∣ ∣ ) \frac{||δx||}{||x||} <= cond(A)* \frac{cond(A)}{1-cond(A)\frac{||δA||}{||A||} }(\frac{||δb||}{ ||b||} +\frac{||δA||}{||A||} ) xδx<=condA1condAAδAcondAbδb+AδA

2.1.6 矩阵的QR分解

Schmidt正交化方法,证明了若实方阵且rank(A)=n,则存在正交阵Q使Qx=||x||2e1
如果A为m×n阵(m>=n),rank(A)= n
使用同样的方法可以证明
A = Q ( R 1 0 ) = Q R \begin{gathered} A=Q \begin{pmatrix} R_1 \\ 0 \end{pmatrix} =QR \end{gathered} A=Q(R10)=QR
其中R1为对角元大于零的上三角形矩阵,矩阵的分解式称为矩阵A的QR分解。
cond2(A)=cond2(R)

定义2.4 设w属Rn,w不等于0,称这种特殊的初等矩阵的初等矩阵
H ( w ) = I − 2 w T w   w w T H(w)= I-\frac{2}{w^Tw} \,ww^T Hw=IwTw2wwT
为Householder矩阵(简称H阵),或称Householder变换矩阵。
H阵性质:
(1)H(w)T=H(w),即H阵为对称阵
(2)H(w)TH(w)= I,即H阵为正交阵
(3)如果H(w)x=y,则||x||2 =||y||2,反之对于任意两个向量x,y属于Rn,若||x||2 =||y||2,且x不等于y,则必存在Householder矩阵H,使得y=Hx

在这里插入图片描述

(4)设x=(x1,x2,…,xn)T属于Rn,且x不等于0,取w=x ± ||x||2e1
H ( w ) = H ( x ± ∣ ∣ x ∣ ∣ 2 e 1 ) x = ± ∣ ∣ x ∣ ∣ 2 e 1   = ± ∣ ∣ x ∣ ∣ 2 ( 1 , 0 , . . . , 0 ) T H(w)=H(x ± ||x||_2e_1)x = ± ||x||_2e_1~= ± ||x||_2(1,0,...,0)^T Hw=Hx±x2e1x=±x2e1 =±x2(1,0,...,0)T

推论2.1 设x=(x1,x2,…,xnT属于Cn且x≠0,则存在Householder矩阵
H ( w ) = I − 2 w T w   w w T H(w)= I-\frac{2}{w^Tw} \,ww^T H(w)=IwTw2wwT
使得H(w)x=αe1,其中|α|=||x||2,且αxHe1为实数。

2.2 特殊矩阵的特征系统

定理2.8(Schur 定理)设A属于Cn×n,则存在酉阵U属于Cn×n使得
A = U R U H A=URU^H A=URUH
其中R属于Cn为上三角形矩阵。
该定理还可以表示为:任意n阶方阵酉相似于一个以其特征值为对角元的上三角形矩阵R,通常称R为A的Schur标准型。

定义2.5 设A属于Cn×n,若
A H A = A A H A^HA=AA^H AHA=AAH
则A为正规矩阵。

常见的正规矩阵:

  • Hermite阵(AH=A)
  • 实对称矩阵(AT=A)
  • 斜Hermite阵(AH=-A)
  • 实反对称矩阵(AT=-A)
  • 酉阵(AHA=AAH=I)
  • 正交矩阵(ATA=AAT=I)

推论2.2 设A为n阶方阵,则A为正规矩阵的充分必要条件是存在n阶酉阵U,使得
A = U D U H A=UDU^H A=UDUH其中D为n阶对角矩阵。

推论2.3 设A属于Cn×n,则
(1)A为H阵的充分必要条件为,存在酉阵U属于Cn×n,使得 A = U D U H A=UDU^H A=UDUH其中D为n阶实对角矩阵。
(2)A为斜H阵的充分必要条件为,存在酉阵U属于Cn×n,使得 A = U D U H A=UDU^H A=UDUH其中D属于Cn×n为实对角阵,其对角元素为零或纯虚数。

推论2.4 设A属于Cn×n,则A为酉阵的充分必要条件为存在酉阵U属于Cn×n使得 A = U D U H A=UDU^H A=UDUH,其中D为n阶对角阵,其对角元的模均为1。

定理2.9 设A为n阶方阵,任取ε>0,则在Cn×n中存在一种算子范数||·||M(依赖矩阵A和常数ε),满足||Ⅰ||M=1,并且
∣ ∣ A ∣ ∣ M ≤ ( A ) + ε ||A||_M≤(A)+ε AMA+ε

推论2.5 若ρ(A)<1,则存在范数 ||·|| ,使得||A||<1.

2.3 矩阵的Jordan分解

定义2.6 设A为n阶方阵,A的特征多项式为
d e t ( λ I − A ) = ( λ − λ 1 ) m 1 ( λ − λ 2 ) m 2 … ( λ − λ s ) m s det(λI-A)=(λ-λ_1)^{m_1}(λ-λ_2)^{m_2}…(λ-λ_s)^{m_s} detλIA=λλ1m1λλ2m2λλsms

  • mi(i=1,2,…s)均为正整数,,m1+……+ms=n
  • λi为A的不同特征值,称mi为特征值λi的代数重复度

特征值λi的线性无关特征向量的个数即子空间N(λiI-A)【即((λiI—A)x=0)的一切解形成的空间,称为λiIn—A的零空间】的维数为特征值的几何重复度,记为αi
α i = n − r a n k ( λ i I — A ) α_i=n-rank(λ_iI—A) αi=nrankλiIA

定理2.10 设A为n阶方阵,λi为其特征值,mi和αi分别为其代数重复度和几何重复度,则mi≥αi

定义2.7 设A为n阶方阵, ,如果mii则称特征值λi为半单的;如果mi>αi,则称特征值λi为亏损的。
如果矩阵A的某一个特征值代数重复度为1,则它一定是半单的。
定理2.11 n阶方阵A可对角化的充分必要条件是每一个特征值λi均为半单,即mii,i=1,2…s
               A是不可对角化的充分必要条件时它有亏损的特征值,即存在i,使得mi>αi
因此,也称一个不可对角化的矩阵为亏损矩阵。

不可对角化的矩阵的相似标准型(Jordan分解形式)
定义2.8 称下面的k×k阶方阵
J k ( λ ) = ( λ   1   0   0   0 0   λ   1   0   0 0   0   …   1   0 0   0   0   λ   1   ) J_k(λ)=\begin{pmatrix} λ \ 1 \ 0 \ 0 \ 0 \\ 0 \ λ \ 1 \ 0 \ 0 \\ 0 \ 0 \ …\ 1\ 0 \\ 0 \ 0 \ 0 \ λ \ 1 \ \end{pmatrix} Jk(λ)=λ 1 0 0 00 λ 1 0 00 0  1 00 0 0 λ 1 为Jordan块。

定义2.9 由若干个Jordan块排成的块对角矩阵称为Jordan阵。
定理2.12 设A为n阶方阵,则存在n阶可逆矩阵T使得
A = T J T − 1 A=TJT^{-1} A=TJT1J=diag(Jn1(λi),…,Jnk(λk)),n1+…+nk=n
该分解为A的Jordan分解,J为Jordan标准型,T为变换矩阵。

J的对角元素为A的特征值。

Jordan标准型是一个块对角矩阵,其对角元便为矩阵J的特征值。
特征值的代数重复度就是J中该特征值的Jordan块阶数的和,几何重复度为该特征值的Jordan块个数。
定理2.13 设A为n阶方阵,λi为其特征值,则A的Jordan标准型J中以λi为特征值、阶数为l的Jordan块的个数为 r l + 1 + r l − 1 − 2 r l r_{l+1}+ r_{l-1}-2r_l rl+1+rl12rl
其中2rl=rank{λiI—A}

定理2.14 (Hamilton-Caylay)设A∈Cn×n,φ(λ)=det(λI-A),则φ(A)=0。


2.4矩阵的奇异值分解

2.4.1 矩阵的奇异值分解

定义2.10 设A∈Cm×n,k=min(m,n),Hermite半正定矩阵AHA的特征值为λ1≥λ2≥…≥λk≥0,称非负实数
σ i ( A ) = √ λ   i   , i = 1 , 2 , … , σ_i(A)=√λ~i~,i=1,2,…, σiA=λ i i=1,2
k为矩阵的奇异值。
矩阵的奇异值满足以下性质:
定理2.15 设A、B属于Cm×n,如果存在m阶、n阶酉阵U、V,使得A=UBVH,则矩阵A、B的奇异值相同。
定理2.16 设A∈Cm×n,且秩rank(A)=r,则存在m阶、n阶酉阵U、V使得
( ∑   0 0    0 ) \begin{pmatrix} ∑ \ 0 \\ 0 \ \ 0 \end{pmatrix} ( 00  0)
其中∑=diag(σ1σ2,…,σr),σi(i=1,2,…r)为矩阵A的非零奇异值。
推论2.6 设A∈Cm×n,且秩rank(A)=r,则存在m阶、n阶酉阵U、V使得
A = U ( σ 1   0   0   0 0   σ 2   0   0 0   0   . . .   0 0   0   0   σ n ) V H A=U\begin{pmatrix} σ_1 \ 0 \ 0 \ 0 \\ 0 \ σ_2 \ 0 \ 0 \\ 0 \ 0 \ ... \ 0 \\ 0 \ 0 \ 0 \ σ_n \end{pmatrix} V^H A=Uσ1 0 0 00 σ2 0 00 0 ... 00 0 0 σnVH
其中σi>0为矩阵A的奇异值。

2.4.2 用矩阵的奇异值分解讨论矩阵的性质

定理2.17 矩阵A的非零奇异值的个数恰为矩阵A的秩。
定理2.18 R(A)=span{u1,u2,…,ur},N(A)=span{vr+1,vr+2,…,vn}其中R(A)为A的列向量生成的子空间,称为A的值域或像空间,即
R ( A ) = s p a n { a 1 , a 2 , … , a n } R(A)=span\{a_1,a_2,…,a_n\} R(A)=span{a1,a2,an}
A的零空间或核,即N(A)={x|Ax=0}
定理2.19
定理2.20 如果A为Hermite矩阵,则A的奇异值即为A的特征值的绝对值。
定理2.21 如果A为n阶方阵,则|det(A)|= σ1×σ2×……×σn
定理2.22 秩为r的m×n矩阵A可以表示为r个秩为1的矩阵的和:
                A=σ1u1v1H2u2v2H+……+σnunvnH

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值