线性代数 --- 用条件数(condition number)来判断矩阵是否可逆

条件数(condition number)

        在很长的一段时间里,我们判断一个矩阵是否可逆,都是根据矩阵的行列式det是否为0,来判断的。如果行列式的值为0,则我们认定该矩阵为奇异矩阵,即不可逆矩阵。如果行列式的值不为0,则认为该矩阵可逆。

        可实际上,我们在计算机中求矩阵的行列式时,更多时候不太会得到一个标准的0,而是一个很小很小的数,我们会把它当作0,并判断该矩阵不可逆。

        现在我们介绍一种全新的判断矩阵是否可逆的方法,英文叫condition number,中文翻译为条件数。这也是我在matlab里面看到的一个方法,在matlab中的命令为cond(A)它是方程组Ax=b中右端b的变换对于解x的影响的一个度量值,用希腊字母\LARGE \kappa表示

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松下J27

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值