场论——方向导数与梯度
- 方向导数(标量):多元函数在某点沿某一方向的变化率,方向定了,大小就定了
- 梯度(矢量):指示方向导数最大时方向导数方向的矢量,比如某个点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0)的梯度就指示了P点沿哪个方向会取得最大方向导数
注:方向导数在某点方向定了,大小也就定了,但是在这个点上有无数个方向,而取最大值时的方向是由这个点的梯度方向决定的,可以看出方向导数侧重于大小,而梯度侧重于方向
结论:
1.梯度向量 grad
z
=
(
z
x
′
,
z
y
′
)
z = (z'_x,z'_y)
z=(zx′,zy′)或者
z
x
′
i
⃗
+
z
y
′
j
⃗
z'_x\vec{i}+z'_y\vec{j}
zx′i+zy′j
2.方向导数
∂
z
∂
l
=
\dfrac{\partial z}{\partial l} =
∂l∂z= grad
z
⋅
z·
z⋅
(
c
o
s
α
,
c
o
s
β
)
(cos\alpha,cos\beta)
(cosα,cosβ),梯度与
l
l
l方向余弦的内积就是方向导数,如果两者恰好正向平行就取得最大值
例
z
=
2
+
a
x
2
+
b
y
2
z = 2 + ax^2 +by^2
z=2+ax2+by2是一个二元函数,它的全微分为
d
z
=
2
a
x
d
x
+
2
b
y
d
y
dz = 2axdx+2bydy
dz=2axdx+2bydy
z对x的偏导就是
∂
z
∂
x
=
2
a
x
\dfrac{\partial z}{\partial x} = 2ax
∂x∂z=2ax,反映的是z沿着x轴的变化趋势,这个方向为(1,0)
z对y的偏导就是
∂
z
∂
y
=
2
b
y
\dfrac{\partial z}{\partial y} = 2by
∂y∂z=2by,反映的是z沿着y轴的变化趋势,这个方向为(0,1)
那如果沿着一个其他方向的变化,应该怎么表示呢?取一个方向为
l
(
c
o
s
α
,
c
o
s
β
)
l(cosα,cosβ)
l(cosα,cosβ)
由全微分得
∂
z
∂
l
\dfrac{\partial z}{\partial l}
∂l∂z
=
2
a
x
∂
x
∂
l
+
2
b
y
∂
y
∂
l
=
2
a
x
c
o
s
α
+
2
b
y
c
o
s
β
= \dfrac{2ax\partial x}{\partial l}+\dfrac{2by\partial y}{\partial l} =2axcosα+2bycosβ
=∂l2ax∂x+∂l2by∂y=2axcosα+2bycosβ这样我们就计算出了沿
l
l
l的方向导数
如果我们对上式进一步变形 =
(
2
a
x
,
2
b
y
)
⋅
(
c
o
s
α
,
c
o
s
β
)
(2ax,2by)\cdot (cosα,cosβ)
(2ax,2by)⋅(cosα,cosβ)。两个矢量作内积是一个标量,这个标量最大值为
∣
(
2
a
x
,
2
b
y
)
∣
⋅
∣
(
c
o
s
α
,
c
o
s
β
)
∣
=
∣
(
2
a
x
,
2
b
y
)
∣
|(2ax,2by)|\cdot |(cosα,cosβ)| = |(2ax,2by)|
∣(2ax,2by)∣⋅∣(cosα,cosβ)∣=∣(2ax,2by)∣当且仅当两个矢量正向平行时取得。
并且我们发现方向导数的最大值,恰好就是梯度向量的范数(模)