MSA迭代步长

MSA算法一般是沿下降方向给定一个确定的步长,标准公式如下:
在这里插入图片描述
式中, k1 为正常数,决定步长的长度, k2 是非负常数,代表了对起始步长的补偿值,n为迭代次数。经典的MSA算法一般令 k1=1 , k2=0 ,即取 在这里插入图片描述
连续权重平均法(MSWA)
在这里插入图片描述
其中:d为正的参数。
在这里插入图片描述

可以看出,传统的MSA本质上是d = 0的MSWA的特例。 d的值确定要分配给后续迭代的权重。 d值越大,分配给起始中间点的权重越小。通过不同的实现方式,我们为MSWA开发了两种算法。
在这里插入图片描述
MSWA-I
在这里插入图片描述
使用加权步长a,然后计算新的辅助点。与原始MSA相比,MSWA-1的实现成本几乎相同,除了额外计算加权步长ax之外,这是一项微不足道的任务。
MSWA-II
在这里插入图片描述
注意,直到最终输出之前,在行(*)上都不需要计算加权平均值x *。

在常规的MSA和MSWA中,步长序列是先验确定的。这些序列不考虑由求解过程生成的任何中间信息。在下一节中,我们将开发一种自我调节的平均方法,其步长选择会根据最后一次迭代中的信息而有所不同
自动调整平均法(SRA)
在原始MSA中,无论当前解如何接近最佳解,Ak在每次迭代时都会增加一个增量。但是,稳定的增量可能会产生两个可能的缺点。其中之一是步长可能太大,导致下一个解比上一个解更远离最优解,即| x * t1-x“ ll21 | x * -x”
。另一个缺点是,当当前解决方案接近最佳解决方案时,步长可能会太小,以致收敛速度非常慢。如果我们可以使用两次迭代之间的信息,则可以指导步长的选择“加速”或“减速”为零。
当势函数检测到先前迭代中的步长大小对收敛有效时,它将当前步长大小缓慢收敛为零;否则,将加快平均方法中步长的减小。
由于y *→x,最方便的测量方法可以用来监视收敛点是辅助点y“与上次最优解解x”之间的距离。因此,自调节平均算法根据绝对误差|| x * -yll
的信息来调节Bk的增量。如果迭代趋于发散,或者每当距离变大时,Bk的增量应大于1;否则,当解序列趋于收敛时,或每当距离变小时,Bk的增量应小于1。那是:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
{ak}仍然单调递减正序列,但是,它保持了更合理的递减速度。特别是,当迭代接近最佳解时,步长将缓慢减小以避免收敛速度变慢。
迭代时,自调节平均方法可以有效地调整步长。如图2所示,当自调节平均方法检测到发散方法时,它会迅速减小其搜索步长,以避免解离最优解越来越远。否则,它将采用更大的步长来探索解决方案空间。因此,当解接近最佳解时,自调节平均方法既不能保持步长太大也不会太小,步长序列的下降速度比常规MSA慢得多。

MSWA在以后的迭代中分配更多的权重,而不是在MSA中分配相等的平均值。自调节平均法会根据辅助解算点与中间解算点之间的距离来调整步长。数值示例表明,MSWA和自我
稳定的平均方法以更快的收敛速度胜过传统的MSA。加速因素显着增加,尤其是对于高精度解决方案。
MSWA和自调节平均方法中的参数都显着影响收敛速度。当需要较低的精度时,MSWA的收敛速度可能会比常规MSA慢。相反,自调节平均方法始终显示出比常规MSA更好的收敛性。尽管在MSWA中有多种选择权重参数d的方法,但d的选择遵循“对角线规则”,即精度更高的解决方案需要更大的权重参数d。

参考《Method of Successive Weighted Averages (MSWA) and Self-Regulated Averaging Schemes for Solving Stochastic User Equilibrium Problem》和《The Algorithms for MEM Stochastic User Equilibrium Model》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值